Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39200075

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen in humans and a frequent cause of severe nosocomial infections and fatal infections in immunocompromised individuals. Its ability to form biofilms has been the main driving force behind its resistance to almost all conventional antibiotics, thereby limiting treatment efficacy. In an effort to discover novel therapeutic agents to fight P. aeruginosa-associated biofilm infections, the truncated analogs of scorpion venom-derived peptide IsCT were synthesized and their anti-biofilm properties were examined. Among the investigated peptides, the IsCT-Δ6-8 peptide evidently showed the most potential anti-P. aeruginosa biofilm activity and the effect was not due to bacterial growth inhibition. The IsCT-Δ6-8 peptide also exhibited inhibitory activity against the production of pyocyanin, an important virulence factor of P. aeruginosa. Furthermore, the IsCT-Δ6-8 peptide significantly suppressed the production of inflammatory mediators nitric oxide and interleukin-6 in P. aeruginosa LPS-induced macrophages. Due to its low cytotoxicity to mammalian cells, the IsCT-Δ6-8 peptide emerges as a promising candidate with significant anti-biofilm and anti-inflammatory properties. These findings highlight its potential application in treating P. aeruginosa-related biofilm infections.

2.
PeerJ ; 12: e16938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406294

RESUMO

The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is the most common cause of exacerbation of chronic obstructive pulmonary disease (COPD), of which an excessive inflammatory response is a hallmark. With the limited success of current medicines there is an urgent need for the development of novel therapeutics that are both safe and effective. In this study, we explored the regulatory potential of pomegranate-derived peptides Pug-1, Pug-2, Pug-3, and Pug-4 on NTHi-induced inflammation. Our results clearly showed that to varying degrees the Pug peptides inhibited NTHi-induced production of IL-1ß, a pivotal cytokine in COPD, and showed that these effects were not related to cytotoxicity. Pug-4 peptide exhibited the most potent inhibitory activity. This was demonstrated in all studied cell types including murine (RAW264.7) and human (differentiated THP-1) macrophages as well as human lung epithelial cells (A549). Substantial reduction by Pug-4 of TNF-α, NO and PGE2 in NTHi-infected A549 cells was also observed. In addition, Pug-4 strongly inhibited the expression of nuclear-NF-κB p65 protein and the NF-κB target genes (determined by IL-1ß, TNF-α, iNOS and COX-2 mRNA expression) in NTHi-infected A549 cells. Pug-4 suppressed the expression of NLRP3 and pro-IL-1ß proteins and inhibited NTHi-mediated cleavage of caspase-1 and mature IL-1ß. These results demonstrated that Pug-4 inhibited NTHi-induced inflammation through the NF-κB signaling and NLRP3 inflammasome activation. Our findings herein highlight the significant anti-inflammatory activity of Pug-4, a newly identified peptide from pomegranate, against NTHi-induced inflammation. We therefore strongly suggest the potential of the Pug-4 peptide as an anti-inflammatory medicine candidate for treatment of NTHi-mediated inflammation.


Assuntos
Anti-Inflamatórios , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Haemophilus influenzae/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Punica granatum/química , Fator de Necrose Tumoral alfa , Compostos Fitoquímicos/farmacologia
3.
World J Microbiol Biotechnol ; 37(9): 153, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398287

RESUMO

The continuous increase in the incidence of infectious diseases and the rapid unchecked rise in multidrug-resistance to conventional antibiotics have led to the search for alternative strategies for treatment and clinical management of microbial infections. Since quorum sensing (QS) regulates numerous virulence determinants and pathogenicity in bacteria, inhibition of QS promises to be an attractive target for development of novel therapeutics. In this study, a series of cinnamic acid analogs and benzalacetone analogs were designed and synthesized, and their QS-inhibitory activities explored. We found that, among the test compounds, 4-methoxybenzalacetone (8) exhibited potent anti-quorum sensing property, as evidenced by inhibition of QS-controlled violacein production of Chromobacterium violaceum ATCC12472. The inhibitory activity of such a compound, which was the methyl keto analog of the corresponding cinnamic acid, was not only stronger than the parent cinnamic acid (1), but also superior to that of furanone, the reference drug. Based on our observations, its mechanism of quorum sensing inhibition is likely to be mediated by interference with N-acyl-homoserine lactones (AHL) synthesis. Moreover, 4-methoxybenzalacetone (8) also suppressed the production of pyocyanin, rhamnolipids and swarming motility of Pseudomonas aeruginosa, suggesting a broad spectrum of anti-QS activities of this compound. In terms of structure-activity relationship, the possible chemical substitutions on the scaffold of cinnamic acid required for QS inhibitory activity are also discussed. Since 4-methoxybenzalacetone (8) showed no toxicity to both bacteria and mammalian cells, our findings therefore indicate the anti-QS potential of this compound as a novel effective QS inhibitor.


Assuntos
Chromobacterium/fisiologia , Cinamatos/síntese química , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Animais , Linhagem Celular , Chromobacterium/efeitos dos fármacos , Cinamatos/química , Cinamatos/farmacologia , Glicolipídeos/metabolismo , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/metabolismo , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos
4.
PLoS One ; 12(8): e0183852, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28850608

RESUMO

Antimicrobial peptides (AMPs) are attractive alternatives to antibiotics. Due to their immune modulatory properties, AMPs are at present emerging as promising agents for controlling inflammatory-mediated diseases. In this study, anti-inflammatory potential of an antimicrobial peptide, KLK (KLKLLLLLKLK) and its analogs was evaluated in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. The results herein demonstrated that KLK peptide as well as its analogs significantly inhibited the pro-inflammatory mediator nitric oxide (NO), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) production in LPS-stimulated RAW 264.7 macrophages in dose-dependent manners, and such inhibitory effects were not due to direct cytotoxicity. When considering inhibition potency, KLK among the test peptides exhibited the most effective activity. The inhibitory activity of KLK peptide also extended to include suppression of LPS-induced production of prostaglandin E2 (PGE2). KLK significantly decreased mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as mRNA expression of IL-1ß and TNF-α. Moreover, KLK inhibited nuclear translocation of nuclear factor-κB (NF-κB) p65 and blocked degradation and phosphorylation of inhibitor of κB (IκB). Taken together, these results suggested that the KLK peptide inhibited inflammatory response through the down-regulation of NF-κB mediated activation in macrophages. Since peptide analogs with different amino acid sequences and arrangement were investigated for their anti-inflammatory activities, the residues/structures required for activity were also discussed. Our findings therefore proved anti-inflammatory potential of the KLK peptide and provide direct evidence for therapeutic application of KLK as a novel anti-inflammatory agent.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Dinoprostona/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Oligopeptídeos/farmacologia , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA