Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 3(6): e801, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37358238

RESUMO

Biological assays are essential tools in biomedical and pharmaceutical research. In simplest terms, such an assay is an analytical method used to measure or predict a response in a biological system in the presence of a given stimulus (e.g., drug). The inherent complexity involved in evaluating a biological system requires the use of rigorous and appropriate tools for data analysis. Linear and nonlinear regression models represent critically important statistical analyses used to define the relationships between variables of interest in biological systems. Recent challenges relating to the reproducibility of published data suggest the absence of standardized and routine use of statistics to support experimental results across a wide range of scientific disciplines. The current situation warrants an introductory review of basic regression concepts using current, practical examples, along with references to in-depth resources. The goal is to provide the necessary information to help standardize the analysis of biological assays in academic research and drug discovery and development, elevating their utility and increasing data transparency and reproducibility. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.


Assuntos
Bioensaio , Dinâmica não Linear , Reprodutibilidade dos Testes , Análise de Regressão , Bioensaio/métodos , Análise de Dados
2.
Diabetes ; 66(1): 206-217, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27797911

RESUMO

A hallmark of type 2 diabetes is impaired insulin receptor (IR) signaling that results in dysregulation of glucose homeostasis. Understanding the molecular origins and progression of diabetes and developing therapeutics depend on experimental models of hyperglycemia, hyperinsulinemia, and insulin resistance. We present a novel monoclonal antibody, IRAB-B, that is a specific, potent IR antagonist that creates rapid and long-lasting insulin resistance. IRAB-B binds to the IR with nanomolar affinity and in the presence of insulin efficiently blocks receptor phosphorylation within minutes and is sustained for at least 3 days in vitro. We further confirm that IRAB-B antagonizes downstream signaling and metabolic function. In mice, a single dose of IRAB-B induces rapid onset of hyperglycemia within 6 h, and severe hyperglycemia persists for 2 weeks. IRAB-B hyperglycemia is normalized in mice treated with exendin-4, suggesting that this model can be effectively treated with a GLP-1 receptor agonist. Finally, a comparison of IRAB-B with the IR antagonist S961 shows distinct antagonism in vitro and in vivo. IRAB-B appears to be a powerful tool to generate both acute and chronic insulin resistance in mammalian models to elucidate diabetic pathogenesis and evaluate therapeutics.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Resistência à Insulina/fisiologia , Receptor de Insulina/metabolismo , Animais , Western Blotting , Linhagem Celular , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Fosforilação , Ligação Proteica , Receptor de Insulina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
3.
MAbs ; 9(1): 114-126, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27786612

RESUMO

Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
4.
MAbs ; 8(3): 551-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26761634

RESUMO

Multispecific proteins, such as bispecific antibodies (BsAbs), that bind to two different ligands are becoming increasingly important therapeutic agents. Such BsAbs can exhibit markedly increased target binding and target residence time when both pharmacophores bind simultaneously to their targets. The cross-arm binding efficiency (χ) describes an increase in apparent affinity when a BsAb binds to the second target or receptor (R2) following its binding to the first target or receptor (R1) on the same cell. χ is an intrinsic characteristic of a BsAb mostly related to the binding epitopes on R1 and R2. χ can have significant impacts on the binding to R2 for BsAbs targeting two receptors on the same cell. JNJ-61186372, a BsAb that targets epidermal growth factor receptor (EGFR) and c-Met, was used as the model compound for establishing a method to characterize χ. The χ for JNJ-61186372 was successfully determined via fitting of in vitro cell binding data to a ligand binding model that incorporated χ. The model-derived χ value was used to predict the binding of JNJ-61186372 to individual EGFR and c-Met receptors on tumor cell lines, and the results agreed well with the observed IC50 for EGFR and c-Met phosphorylation inhibition by JNJ-61186372. Consistent with the model, JNJ-61186372 was shown to be more effective than the combination therapy of anti-EGFR and anti-c-Met monovalent antibodies at the same dose level in a mouse xenograft model. Our results showed that χ is an important characteristic of BsAbs, and should be considered for rationale design of BsAbs targeting two membrane bound targets on the same cell.


Assuntos
Anticorpos Biespecíficos , Anticorpos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/patologia , Receptores Proteína Tirosina Quinases/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Biol Chem ; 290(41): 24689-704, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26260789

RESUMO

The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design.


Assuntos
Anticorpos Biespecíficos/imunologia , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-met/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Antígenos de Superfície/química , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Mutação , Fosforilação , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
PLoS One ; 9(3): e92248, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24638075

RESUMO

Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor microenvironment.


Assuntos
Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células/métodos , Descoberta de Drogas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Microambiente Tumoral , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Ligantes , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Reprodutibilidade dos Testes , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Resultado do Tratamento , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos
7.
J Biol Chem ; 285(51): 40135-47, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20929859

RESUMO

Wnt/LRP5 signaling is a central regulatory component of bone formative and resorptive activities, and the pathway inhibitor DKK1 is a suppressor of bone formation and bone mass accrual in mice. In addition, augmented DKK1 levels are associated with high bone turnover in diverse low bone mass states in rodent models and disease etiologies in human. However, examination of the precise role of DKK1 in the normal skeleton and in higher species requires the development of refined DKK1-specific pharmacological tools. Here, we report the strategy resulting in isolation of a panel of fully human anti-DKK1 antibodies applicable to studies interrogating the roles of mouse, rhesus, and human DKK1. Selected anti-DKK1 antibodies bind primate and human DKK-1 with picomolar affinities yet do not appreciably bind to DKK2 or DKK4. Epitopes mapped within the DKK1 C-terminal domain necessary for interaction with LRP5/6 and consequently effectively neutralized DKK1 function in vitro. When introduced into naïve normal growing female mice, IgGs significantly improved trabecular bone volume and structure and increased both trabecular and cortical bone mineral densities in a dose-related fashion. Furthermore, fully human DKK1-IgG displayed favorable pharmacokinetic parameters in non-human primates. In summary, we demonstrate here a rate-limiting function of physiologic DKK1 levels in the regulation of bone mass in intact female mice, amendable to specific pharmacologic neutralization by newly identified DKK1-IgGs. Importantly the fully human IgGs display a profile of attributes that recommends their testing in higher species and their use in evaluating DKK1 function in relevant disease models.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Especificidade de Anticorpos , Densidade Óssea/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Densidade Óssea/imunologia , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/imunologia , Doenças Ósseas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Proteínas Relacionadas a Receptor de LDL/imunologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Macaca fascicularis , Macaca mulatta , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/imunologia
8.
Proc Natl Acad Sci U S A ; 102(41): 14759-64, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16203977

RESUMO

HIV-1 entry into cells is mediated by the envelope glycoprotein receptor-binding (gp120) and membrane fusion-promoting (gp41) subunits. The gp41 heptad repeat 1 (HR1) domain is the molecular target of the fusion-inhibitor drug enfuvirtide (T20). The HR1 sequence is highly conserved and therefore considered an attractive target for vaccine development, but it is unknown whether antibodies can access HR1. Herein, we use gp41-based peptides to select a human antibody, 5H/I1-BMV-D5 (D5), that binds to HR1 and inhibits the assembly of fusion intermediates in vitro. D5 inhibits the replication of diverse HIV-1 clinical isolates and therefore represents a previously unknown example of a crossneutralizing IgG selected by binding to designed antigens. NMR studies and functional analyses map the D5-binding site to a previously identified hydrophobic pocket situated in the HR1 groove. This hydrophobic pocket was proposed as a drug target and subsequently identified as a common binding site for peptide and peptidomimetic fusion inhibitors. The finding that the D5 fusion-inhibitory antibody shares the same binding site suggests that the hydrophobic pocket is a "hot spot" for fusion inhibition and an ideal target on which to focus a vaccine-elicited antibody response. Our data provide a structural framework for the design of new immunogens and therapeutic antibodies with crossneutralizing potential.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Modelos Moleculares , Sítios de Ligação de Anticorpos/genética , Sítios de Ligação de Anticorpos/imunologia , Epitopos/genética , Proteína gp41 do Envelope de HIV/genética , Humanos , Luciferases , Ressonância Magnética Nuclear Biomolecular , Reação em Cadeia da Polimerase , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA