Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Cell Host Microbe ; 31(8): 1288-1300.e6, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516111

RESUMO

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections pose a significant health burden. Using pre-fusion conformation fusion (F) proteins, we isolated a panel of anti-F antibodies from a human donor. One antibody (RSV-199) potently cross-neutralized 8 RSV and hMPV strains by recognizing antigenic site III, which is partially conserved in RSV and hMPV F. Next, we determined the cryoelectron microscopy (cryo-EM) structures of RSV-199 bound to RSV F trimers, hMPV F monomers, and an unexpected dimeric form of hMPV F. These structures revealed how RSV-199 engages both RSV and hMPV F proteins through conserved interactions of the antibody heavy-chain variable region and how variability within heavy-chain complementarity-determining region 3 (HCDR3) can be accommodated at the F protein interface in site-III-directed antibodies. Furthermore, RSV-199 offered enhanced protection against RSV A and B strains and hMPV in cotton rats. These findings highlight the mechanisms of broad neutralization and therapeutic potential of RSV-199.


Assuntos
Metapneumovirus , Vírus Sincicial Respiratório Humano , Humanos , Metapneumovirus/metabolismo , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Região Variável de Imunoglobulina , Proteínas Virais de Fusão
3.
Nat Commun ; 12(1): 7069, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862384

RESUMO

Antibody drugs exert therapeutic effects via a range of mechanisms, including competitive inhibition, allosteric modulation, and immune effector mechanisms. Facilitated dissociation is an additional mechanism where antibody-mediated "disruption" of stable high-affinity macromolecular complexes can potentially enhance therapeutic efficacy. However, this mechanism is not well understood or utilized therapeutically. Here, we investigate and engineer the weak disruptive activity of an existing therapeutic antibody, omalizumab, which targets IgE antibodies to block the allergic response. We develop a yeast display approach to select for and engineer antibody disruptive efficiency and generate potent omalizumab variants that dissociate receptor-bound IgE. We determine a low resolution cryo-EM structure of a transient disruption intermediate containing the IgE-Fc, its partially dissociated receptor and an antibody inhibitor. Our results provide a conceptual framework for engineering disruptive inhibitors for other targets, insights into the failure in clinical trials of the previous high affinity omalizumab HAE variant and anti-IgE antibodies that safely and rapidly disarm allergic effector cells.


Assuntos
Imunoglobulina E/metabolismo , Omalizumab/farmacologia , Engenharia de Proteínas , Receptores de IgE/metabolismo , Animais , Membrana Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Voluntários Saudáveis , Humanos , Imunoglobulina E/ultraestrutura , Ligantes , Camundongos , Camundongos Transgênicos , Omalizumab/genética , Omalizumab/uso terapêutico , Cultura Primária de Células , Receptores de IgE/ultraestrutura , Células Sf9 , Spodoptera
4.
mBio ; 12(5): e0262521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700375

RESUMO

Human cytomegalovirus (HCMV) is a herpesvirus that produces disease in transplant patients and newborn children. Entry of HCMV into cells relies on gH/gL trimer (gHgLgO) and pentamer (gHgLUL128-131) complexes that bind cellular receptors. Here, we studied the structure and interactions of the HCMV trimer, formed by AD169 strain gH and gL and TR strain gO proteins, with the human platelet-derived growth factor receptor alpha (PDGFRα). Three trimer surfaces make extensive contacts with three PDGFRα N-terminal domains, causing PDGFRα to wrap around gO in a structure similar to a human hand, explaining the high-affinity interaction. gO is among the least conserved HCMV proteins, with 8 distinct genotypes. We observed high conservation of residues mediating gO-gL interactions but more extensive gO variability in the PDGFRα interface. Comparisons between our trimer structure and a previously determined structure composed of different subunit genotypes indicate that gO variability is accommodated by adjustments in the gO-PDGFRα interface. We identified two loops within gO that were disordered and apparently glycosylated, which could be deleted without disrupting PDGFRα binding. We also identified four gO residues that contact PDGFRα, which when mutated produced markedly reduced receptor binding. These residues fall within conserved contact sites of gO with PDGFRα and may represent key targets for anti-trimer neutralizing antibodies and HCMV vaccines. Finally, we observe that gO mutations distant from the gL interaction site impact trimer expression, suggesting that the intrinsic folding or stability of gO can impact the efficiency of trimer assembly. IMPORTANCE HCMV is a herpesvirus that infects a large percentage of the adult population and causes significant levels of disease in immunocompromised individuals and birth defects in the developing fetus. The virus encodes a complex protein machinery that coordinates infection of different cell types in the body, including a trimer formed of gH, gL, and gO subunits. Here, we studied the interactions of the HCMV trimer with its receptor on cells, the platelet derived growth factor receptor α (PDGFRα), to better understand how HCMV coordinates virus entry into cells. Our results add to our understanding of HCMV strain-specific differences and identify sites on the trimer that represent potential targets for therapeutic antibodies or vaccine development.


Assuntos
Citomegalovirus/metabolismo , Glicoproteínas de Membrana/metabolismo , Multimerização Proteica/fisiologia , Receptores do Fator de Crescimento Derivado de Plaquetas/química , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Microscopia Crioeletrônica/métodos , Citomegalovirus/química , Citomegalovirus/genética , Fibroblastos/virologia , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ligação Proteica , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Proteínas do Envelope Viral/classificação , Proteínas do Envelope Viral/genética , Internalização do Vírus
5.
J Allergy Clin Immunol ; 148(4): 1049-1060, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991582

RESUMO

BACKGROUND: Anaphylaxis represents one of the most severe and fatal forms of allergic reactions. Like most other allergies, it is caused by activation of basophils and mast cells by allergen-mediated cross-linking of IgE bound to its high-affinity receptor, FcεRI, on the cell surface. The systemic release of soluble mediators induces an inflammatory cascade, rapidly causing symptoms with peak severity in minutes to hours after allergen exposure. Primary treatment for anaphylaxis consists of immediate intramuscular administration of adrenaline. OBJECTIVE: While adrenaline alleviates life-threatening symptoms of an anaphylactic reaction, there are currently no disease-modifying interventions available. We sought to develop potent and fast-acting IgE inhibitors with the potential to rapidly terminate acute allergic reactions. METHODS: Using affinity maturation by yeast display and structure-guided molecular engineering, we generated 3 optimized disruptive IgE inhibitors based on designed ankyrin repeat proteins and assessed their ability to actively remove IgE from allergic effector cells in vitro as well as in vivo in mice. RESULTS: The engineered IgE inhibitors rapidly dissociate preformed IgE:FcεRI complexes, terminate IgE-mediated signaling in preactivated human blood basophils in vitro, and shut down preinitiated allergic reactions and anaphylaxis in mice in vivo. CONCLUSIONS: Fast-acting disruptive IgE inhibitors demonstrate the feasibility of developing kinetically optimized inhibitors for the treatment of anaphylaxis and the rapid desensitization of allergic individuals.


Assuntos
Anafilaxia/tratamento farmacológico , Imunoglobulina E/imunologia , Proteínas Recombinantes de Fusão , Alérgenos/imunologia , Anafilaxia/imunologia , Animais , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Desenho de Fármacos , Humanos , Imunoglobulina E/química , Imunoglobulina E/genética , Camundongos Transgênicos , Estrutura Molecular , Ovalbumina/imunologia , Receptores de IgE/química , Receptores de IgE/genética , Receptores de IgE/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico
6.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571127

RESUMO

Paramyxovirus membrane fusion requires an attachment protein that binds to a host cell receptor and a fusion protein that merges the viral and host membranes. For Nipah virus (NiV), the G attachment protein binds ephrinB2/B3 receptors and activates F-mediated fusion. To visualize dynamic events of these proteins at the membrane interface, we reconstituted NiV fusion activation by overlaying F- and G-expressing cells onto ephrinB2-functionalized supported lipid bilayers and used TIRF microscopy to follow F, G, and ephrinB2. We found that G and ephrinB2 form clusters and that oligomerization of ephrinB2 is necessary for F activation. Single-molecule tracking of F particles revealed accumulation of an immobilized intermediate upon activation. We found no evidence for stable F-G protein complexes before or after activation. These observations lead to a revised model for NiV fusion activation and provide a foundation for investigating other multicomponent viral fusion systems.

7.
Nat Rev Microbiol ; 19(2): 110-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33087881

RESUMO

Herpesviruses are ubiquitous, double-stranded DNA, enveloped viruses that establish lifelong infections and cause a range of diseases. Entry into host cells requires binding of the virus to specific receptors, followed by the coordinated action of multiple viral entry glycoproteins to trigger membrane fusion. Although the core fusion machinery is conserved for all herpesviruses, each species uses distinct receptors and receptor-binding glycoproteins. Structural studies of the prototypical herpesviruses herpes simplex virus 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) entry glycoproteins have defined the interaction sites for glycoprotein complexes and receptors, and have revealed conformational changes that occur on receptor binding. Recent crystallography and electron microscopy studies have refined our model of herpesvirus entry into cells, clarifying both the conserved features and the unique features. In this Review, we discuss recent insights into herpesvirus entry by analysing the structures of entry glycoproteins, including the diverse receptor-binding glycoproteins (HSV-1 glycoprotein D (gD), EBV glycoprotein 42 (gp42) and HCMV gH-gL-gO trimer and gH-gL-UL128-UL130-UL131A pentamer), as well gH-gL and the fusion protein gB, which are conserved in all herpesviruses.


Assuntos
Herpesviridae/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Internalização do Vírus , Citomegalovirus/metabolismo , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 2/metabolismo , Herpesvirus Humano 4/metabolismo , Humanos
8.
Allergy ; 76(3): 853-865, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32997812

RESUMO

BACKGROUND: Serological immunoassays that can identify protective immunity against SARS-CoV-2 are needed to adapt quarantine measures, assess vaccination responses, and evaluate donor plasma. To date, however, the utility of such immunoassays remains unclear. In a mixed-design evaluation study, we compared the diagnostic accuracy of serological immunoassays that are based on various SARS-CoV-2 proteins and assessed the neutralizing activity of antibodies in patient sera. METHODS: Consecutive patients admitted with confirmed SARS-CoV-2 infection were prospectively followed alongside medical staff and biobank samples from winter 2018/2019. An in-house enzyme-linked immunosorbent assay utilizing recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was developed and compared to three commercially available enzyme-linked immunosorbent assays (ELISAs) targeting the nucleoprotein (N), the S1 domain of the spike protein (S1), and a lateral flow immunoassay (LFI) based on full-length spike protein. Neutralization assays with live SARS-CoV-2 were performed. RESULTS: One thousand four hundred and seventy-seven individuals were included comprising 112 SARS-CoV-2 positives (defined as a positive real-time PCR result; prevalence 7.6%). IgG seroconversion occurred between day 0 and day 21. While the ELISAs showed sensitivities of 88.4% for RBD, 89.3% for S1, and 72.9% for N protein, the specificity was above 94% for all tests. Out of 54 SARS-CoV-2 positive individuals, 96.3% showed full neutralization of live SARS-CoV-2 at serum dilutions ≥ 1:16, while none of the 6 SARS-CoV-2-negative sera revealed neutralizing activity. CONCLUSIONS: ELISAs targeting RBD and S1 protein of SARS-CoV-2 are promising immunoassays which shall be further evaluated in studies verifying diagnostic accuracy and protective immunity against SARS-CoV-2.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
9.
Mol Pain ; 16: 1744806920970099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33342372

RESUMO

The transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor is an important mediator of nociception and its expression is enriched in nociceptive neurons. TRPV1 signaling has been implicated in bladder pain and is a potential analgesic target. Resiniferatoxin is the most potent known agonist of TRPV1. Acute exposure of the rat bladder to resiniferatoxin has been demonstrated to result in pain-related freezing and licking behaviors that are alleviated by virally encoded IL-4. The interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE) is a powerful inducer of IL-4 secretion, and is also known to alter host cell transcription through a nuclear localization sequence-based mechanism. We previously reported that IPSE ameliorates ifosfamide-induced bladder pain in an IL-4- and nuclear localization sequence-dependent manner. We hypothesized that pre-administration of IPSE to resiniferatoxin-challenged mice would dampen pain-related behaviors. IPSE indeed lessened resiniferatoxin-triggered freezing behaviors in mice. This was a nuclear localization sequence-dependent phenomenon, since administration of a nuclear localization sequence mutant version of IPSE abrogated IPSE's analgesic effect. In contrast, IPSE's analgesic effect did not seem IL-4-dependent, since use of anti-IL-4 antibody in mice given both IPSE and resiniferatoxin did not significantly affect freezing behaviors. RNA-Seq analysis of resiniferatoxin- and IPSE-exposed bladders revealed differential expression of TNF/NF-κb-related signaling pathway genes. In vitro testing of IPSE uptake by urothelial cells and TRPV1-expressing neuronal cells showed uptake by both cell types. Thus, IPSE's nuclear localization sequence-dependent therapeutic effects on TRPV1-mediated bladder pain may act on TRPV1-expressing neurons and/or may rely upon urothelial mechanisms.


Assuntos
Diterpenos/efeitos adversos , Proteínas do Ovo/uso terapêutico , Proteínas de Helminto/uso terapêutico , Interações Hospedeiro-Parasita/imunologia , Fatores Imunológicos/uso terapêutico , Dor/tratamento farmacológico , Parasitos/química , Bexiga Urinária/patologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas do Ovo/farmacologia , Endocitose/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Helminto/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sinais de Localização Nuclear/metabolismo , Dor/genética , Análise de Componente Principal , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Bexiga Urinária/efeitos dos fármacos , Urotélio/metabolismo
10.
Sci Immunol ; 5(54)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288645

RESUMO

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, can neutralize the virus. It is, however, unknown which features of the serological response may affect clinical outcomes of COVID-19 patients. We analyzed 983 longitudinal plasma samples from 79 hospitalized COVID-19 patients and 175 SARS-CoV-2-infected outpatients and asymptomatic individuals. Within this cohort, 25 patients died of their illness. Higher ratios of IgG antibodies targeting S1 or RBD domains of spike compared to nucleocapsid antigen were seen in outpatients who had mild illness versus severely ill patients. Plasma antibody increases correlated with decreases in viral RNAemia, but antibody responses in acute illness were insufficient to predict inpatient outcomes. Pseudovirus neutralization assays and a scalable ELISA measuring antibodies blocking RBD-ACE2 interaction were well correlated with patient IgG titers to RBD. Outpatient and asymptomatic individuals' SARS-CoV-2 antibodies, including IgG, progressively decreased during observation up to five months post-infection.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/sangue , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
11.
Parasit Vectors ; 13(1): 615, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298153

RESUMO

BACKGROUND: Parasitic infections can increase susceptibility to bacterial co-infections. This may be true for urogenital schistosomiasis and bacterial urinary tract co-infections (UTI). We previously reported that this co-infection is facilitated by S. haematobium eggs triggering interleukin-4 (IL-4) production and sought to dissect the underlying mechanisms. The interleukin-4-inducing principle from Schistosoma mansoni eggs (IPSE) is one of the most abundant schistosome egg-secreted proteins and binds to IgE on the surface of basophils and mast cells to trigger IL-4 release. IPSE can also translocate into host nuclei using a nuclear localization sequence (NLS) to modulate host transcription. We hypothesized that IPSE is the factor responsible for the ability of S. haematobium eggs to worsen UTI pathogenesis. METHODS: Mice were intravenously administered a single 25 µg dose of recombinant S. haematobium-derived IPSE, an NLS mutant of IPSE or PBS. Following IPSE exposure, mice were serially weighed and organs analyzed by histology to assess for toxicity. Twenty-four hours after IPSE administration, mice were challenged with the uropathogenic E. coli strain UTI89 by urethral catheterization. Bacterial CFU were measured using urine. Bladders were examined histologically for UTI-triggered pathogenesis and by PCR for antimicrobial peptide and pattern recognition receptor expression. RESULTS: Unexpectedly, IPSE administration did not result in significant differences in urine bacterial CFU. However, IPSE administration did lead to a significant reduction in UTI-induced bladder pathogenesis and the expression of anti-microbial peptides in the bladder. Despite the profound effect of IPSE on UTI-triggered bladder pathogenesis and anti-microbial peptide production, mice did not demonstrate systemic ill effects from IPSE exposure. CONCLUSIONS: Our data show that IPSE may play a major role in S. haematobium-associated urinary tract co-infection, albeit in an unexpected fashion. These findings also indicate that IPSE either works in concert with other IL-4-inducing factors to increase susceptibility of S. haematobium-infected hosts to bacterial co-infection or does not contribute to enhancing vulnerability to this co-infection.


Assuntos
Expressão Gênica , Imunomodulação , Bexiga Urinária/parasitologia , Infecções Urinárias/imunologia , Infecções Urinárias/parasitologia , Animais , Basófilos , Coinfecção , Proteínas do Ovo , Escherichia coli , Feminino , Proteínas de Helminto/genética , Interleucina-4 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Schistosoma mansoni , Esquistossomose Urinária , Bexiga Urinária/microbiologia
12.
Infect Agent Cancer ; 15: 63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101456

RESUMO

BACKGROUND: Schistosoma haematobium, the helminth causing urogenital schistosomiasis, is a known bladder carcinogen. Despite the causal link between S. haematobium and bladder cancer, the underlying mechanisms are poorly understood. S. haematobium oviposition in the bladder is associated with angiogenesis and urothelial hyperplasia. These changes may be pre-carcinogenic events in the bladder. We hypothesized that the Interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE), an S. haematobium egg-secreted "infiltrin" protein that enters host cell nuclei to alter cellular activity, is sufficient to induce angiogenesis and urothelial hyperplasia. Methods: Mouse bladders injected with S. haematobium eggs were analyzed via microscopy for angiogenesis and urothelial hyperplasia. Endothelial and urothelial cell lines were incubated with recombinant IPSE protein or an IPSE mutant protein that lacks the native nuclear localization sequence (NLS-) and proliferation measured using CFSE staining and real-time monitoring of cell growth. IPSE's effects on urothelial cell cycle status was assayed through propidium iodide staining. Endothelial and urothelial cell uptake of fluorophore-labeled IPSE was measured. Findings: Injection of S. haematobium eggs into the bladder triggers angiogenesis, enhances leakiness of bladder blood vessels, and drives urothelial hyperplasia. Wild type IPSE, but not NLS-, increases proliferation of endothelial and urothelial cells and skews urothelial cells towards S phase. Finally, IPSE is internalized by both endothelial and urothelial cells. Interpretation: IPSE drives endothelial and urothelial proliferation, which may depend on internalization of the molecule. The urothelial effects of IPSE depend upon its NLS. Thus, IPSE is a candidate pro-carcinogenic molecule of S. haematobium. SUMMARY: Schistosoma haematobium acts as a bladder carcinogen through unclear mechanisms. The S. haematobium homolog of IPSE, a secreted schistosome egg immunomodulatory molecule, enhances angiogenesis and urothelial proliferation, hallmarks of pre-carcinogenesis, suggesting IPSE is a key pro-oncogenic molecule of S. haematobium.

13.
Cell Host Microbe ; 28(4): 516-525.e5, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32941787

RESUMO

B cells are critical for the production of antibodies and protective immunity to viruses. Here we show that patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) display early recruitment of B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA subclasses with limited somatic hypermutation in the initial weeks of infection. We identify convergence of antibody sequences across SARS-CoV-2-infected patients, highlighting stereotyped naive responses to this virus. Notably, sequence-based detection in COVID-19 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-binding domain. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and SARS-CoV.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Formação de Anticorpos , Betacoronavirus/genética , COVID-19 , Feminino , Células HEK293 , Humanos , Imunogenética , Imunoglobulina A/genética , Imunoglobulina A/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Análise de Sequência , Glicoproteína da Espícula de Coronavírus/imunologia
14.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32847853

RESUMO

Both Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are human gammaherpesviruses and are important in a variety of malignancies. Eph family receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV and EBV. Previous studies identified five conserved residues (ELEFN50-54) in the N-terminal domain of KSHV gH that are critical for Eph binding and KSHV infection. However, the specific domains of EBV gH/gL important for EphA2 binding are not well described. We found that the KSHV gH (ELEFN50-54) motif is important for higher KSHV fusion and that EBV gH/gL does not utilize a similar motif for fusion activity. We previously identified that an EBV gL N-glycosylation mutant (gL-N69L/S71V) was hyperfusogenic in epithelial cells but not in B cells. To determine whether this glycosylation site may be the binding region for EphA2, we compared the EphA2 binding activity of EBV gH/gL and the EBV gH/gL-N69L/S71V mutant. We found that EBV gH/gL-N69L/S71V had higher binding affinity for EphA2, indicating that the EBV gL N-glycosylation site might be responsible for inhibiting the binding of gH/gL to EphA2. Loss of N-glycosylation at this site may remove steric hindrance that reduces EBV gH/gL binding to EphA2. In addition, the mutations located in the large groove of EBV gH/gL (R152A and G49C) also have decreased binding with EphA2. Taken together, our data indicate that the binding site of EphA2 on EBV gH/gL is at least in part proximal to the EBV gL glycosylation site, which in part accounts for differences in EphA2 binding affinity by KSHV.IMPORTANCE Virus entry into target cells is the first step for virus infection. Understanding the overall entry mechanism, including the binding mechanism of specific virus glycoproteins with cellular receptors, can be useful for the design of small molecule inhibitors and vaccine development. Recently, EphA2 was identified as an important entry receptor for both KSHV and EBV. In the present study, we investigated the required binding sites within EphA2 and EBV gH/gL that mediate the interaction of these two proteins allowing entry into epithelial cells and found that it differed in compared to the interaction of KSHV gH/gL with EphA2. Our discoveries may uncover new potential interventional strategies that block EBV and KSHV infection of target epithelial cells.


Assuntos
Efrina-A2/química , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Glicoproteínas de Membrana/química , Chaperonas Moleculares/química , Receptores Virais/química , Proteínas do Envelope Viral/química , Proteínas Virais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Efrina-A2/genética , Efrina-A2/metabolismo , Regulação da Expressão Gênica , Glicosilação , Células HEK293 , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor EphA2 , Receptores Virais/genética , Receptores Virais/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Internalização do Vírus
15.
medRxiv ; 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32839786

RESUMO

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, could offer protective immunity, and may affect clinical outcomes of COVID-19 patients. We analyzed 625 serial plasma samples from 40 hospitalized COVID-19 patients and 170 SARS-CoV-2-infected outpatients and asymptomatic individuals. Severely ill patients developed significantly higher SARS-CoV-2-specific antibody responses than outpatients and asymptomatic individuals. The development of plasma antibodies was correlated with decreases in viral RNAemia, consistent with potential humoral immune clearance of virus. Using a novel competition ELISA, we detected antibodies blocking RBD-ACE2 interactions in 68% of inpatients and 40% of outpatients tested. Cross-reactive antibodies recognizing SARS-CoV RBD were found almost exclusively in hospitalized patients. Outpatient and asymptomatic individuals' serological responses to SARS-CoV-2 decreased within 2 months, suggesting that humoral protection may be short-lived.

16.
bioRxiv ; 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32676593

RESUMO

During virus infection B cells are critical for the production of antibodies and protective immunity. Here we show that the human B cell compartment in patients with diagnostically confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA subclasses with limited somatic hypermutation in the initial weeks of infection. We identify extensive convergence of antibody sequences across SARS-CoV-2 patients, highlighting stereotyped naïve responses to this virus. Notably, sequence-based detection in COVID-19 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-binding domain. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.

17.
Nat Commun ; 11(1): 165, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913280

RESUMO

Targeting of immunoglobulin E (IgE) represents an interesting approach for the treatment of allergic disorders. A high-affinity monoclonal anti-IgE antibody, ligelizumab, has recently been developed to overcome some of the limitations associated with the clinical use of the therapeutic anti-IgE antibody, omalizumab. Here, we determine the molecular binding profile and functional modes-of-action of ligelizumab. We solve the crystal structure of ligelizumab bound to IgE, and report epitope differences between ligelizumab and omalizumab that contribute to their qualitatively distinct IgE-receptor inhibition profiles. While ligelizumab shows superior inhibition of IgE binding to FcεRI, basophil activation, IgE production by B cells and passive systemic anaphylaxis in an in vivo mouse model, ligelizumab is less potent in inhibiting IgE:CD23 interactions than omalizumab. Our data thus provide a structural and mechanistic foundation for understanding the efficient suppression of FcεRI-dependent allergic reactions by ligelizumab in vitro as well as in vivo.


Assuntos
Antialérgicos/administração & dosagem , Anticorpos Anti-Idiotípicos/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Hipersensibilidade/tratamento farmacológico , Omalizumab/administração & dosagem , Animais , Antialérgicos/química , Anticorpos Anti-Idiotípicos/química , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Humanos , Hipersensibilidade/imunologia , Imunoglobulina E/química , Imunoglobulina E/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Omalizumab/química , Receptores de IgE/imunologia
18.
Am J Physiol Renal Physiol ; 316(6): F1133-F1140, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785353

RESUMO

Chemotherapy-induced hemorrhagic cystitis is characterized by bladder pain and voiding dysfunction caused by hemorrhage and inflammation. Novel therapeutic options to treat hemorrhagic cystitis are needed. We previously reported that systemic administration of the Schistosomiasis hematobium-derived protein H-IPSEH06 (IL-4-inducing principle from Schistosoma mansoni eggs) is superior to three doses of MESNA in alleviating hemorrhagic cystitis (Mbanefo EC, Le L, Pennington LF, Odegaard JI, Jardetzky TS, Alouffi A, Falcone FH, Hsieh MH. FASEB J 32: 4408-4419, 2018). Based on prior reports by others on S. mansoni IPSE (M-IPSE) and additional work by our group, we reasoned that H-IPSE mediates its effects on hemorrhagic cystitis by binding IgE on basophils and inducing IL-4 expression, promoting urothelial proliferation, and translocating to the nucleus to modulate expression of genes implicated in relieving bladder dysfunction. We speculated that local bladder injection of the S. hematobium IPSE ortholog IPSEH03, hereafter called H-IPSEH03, might be more efficacious in preventing hemorrhagic cystitis compared with systemic administration of IPSEH06. We report that H-IPSEH03, like M-IPSE and H-IPSEH06, activates IgE-bearing basophils in a nuclear factor of activated T-cells reporter assay, indicating activation of the cytokine pathway. Furthermore, H-IPSEH03 attenuates ifosfamide-induced increases in bladder wet weight in an IL-4-dependent fashion. H-IPSEH03 relieves hemorrhagic cystitis-associated allodynia and modulates voiding patterns in mice. Finally, H-IPSEH03 drives increased urothelial cell proliferation, suggesting that IPSE induces bladder repair mechanisms. Taken together, H-IPSEH03 may be a potential novel therapeutic to treat hemorrhagic cystitis by basophil activation, attenuation of allodynia, and promotion of urothelial cell proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cistite/prevenção & controle , Proteínas do Ovo/administração & dosagem , Proteínas de Helminto/administração & dosagem , Hemorragia/prevenção & controle , Fatores Imunológicos/administração & dosagem , Bexiga Urinária/efeitos dos fármacos , Urotélio/efeitos dos fármacos , Administração Intravesical , Animais , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Basófilos/metabolismo , Linhagem Celular , Cistite/induzido quimicamente , Cistite/imunologia , Cistite/metabolismo , Modelos Animais de Doenças , Feminino , Hemorragia/induzido quimicamente , Hemorragia/imunologia , Hemorragia/metabolismo , Humanos , Ifosfamida , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Injeções Intravenosas , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Bexiga Urinária/imunologia , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Urodinâmica/efeitos dos fármacos , Urotélio/imunologia , Urotélio/metabolismo , Urotélio/patologia
19.
mBio ; 10(1)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782663

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with the development of Kaposi's sarcoma (KS). KSHV target cells include endothelial cells, B cells, monocytes, epithelial cells, dendritic cells, macrophages, and fibroblasts. KSHV entry into target cells is a complex multistep process and is initiated by the binding and interaction of viral envelope glycoproteins with the cellular receptors. In the current studies, we have found that EphA4 promotes KSHV glycoprotein H/glycoprotein L (gH/gL)-mediated fusion and infection better than does ephrin A2 (EphA2) in HEK293T cells, indicating that EphA4 is a new KSHV entry receptor. To confirm that epithelial cells express EphA2 and EphA4, we analyzed the expression of EphA2 and EphA4 in epithelial cells, endothelial cells, B cells, monocytes, fibroblasts using RNA sequencing (RNA-seq) data analysis of existing data sets. We found that these cell types broadly express both EphA2 and EphA4, with the exception of monocytes and B cells. To confirm EphA4 is important for KSHV fusion and infection, we generated EphA2 and EphA4 single- and double-knockout cells. We found that both EphA2 and EphA4 play a role in KSHV fusion and infection, since EphA2-EphA4 double-knockout cells had the greatest decrease in fusion activity and infection compared to single-knockout cells. Fusion and infection of KSHV were rescued in the EphA2-EphA4 double-knockout cells upon overexpression of EphA2 and/or EphA4. EphA2 binds to both Epstein-Barr virus (EBV) and KSHV gH/gL; however, EphA4 binds only to KSHV gH/gL. Taken together, our results identify EphA4 as a new entry receptor for KSHV.IMPORTANCE The overall entry mechanism for herpesviruses is not completely known, including those for the human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). To fully understand the herpesvirus entry process, functional receptors need to be identified. In the current study, we found that EphA4 can also function for a KSHV entry receptor along with EphA2. Interestingly, we found that EphA4 does not function as an entry receptor for EBV, whereas EphA2 does. The discovery of EphA4 as a KSHV entry receptor has important implications for KSHV pathogenesis in humans, may prove useful in understanding the unique pathogenesis of KSHV infection in humans, and may uncover new potential targets that can be used for the development of novel interventional strategies.


Assuntos
Herpesvirus Humano 8/fisiologia , Receptor EphA4/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Células Endoteliais/metabolismo , Efrina-A2/genética , Efrina-A2/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Células HEK293 , Humanos , Receptor EphA2 , Receptor EphA4/genética
20.
Proc Natl Acad Sci U S A ; 116(9): 3728-3733, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733288

RESUMO

Human cytomegalovirus (HCMV) causes substantial disease in transplant patients and harms the development of the nervous system in babies infected in utero. Thus, there is a major focus on developing safe and effective HCMV vaccines. Evidence has been presented that a major target of neutralizing antibodies (NAbs) is the HCMV pentamer glycoprotein gH/gL/UL128-131. In some studies, most of the NAbs in animal or human sera were found to recognize the pentamer, which mediates HCMV entry into endothelial and epithelial cells. It was also reported that pentamer-specific antibodies correlate with protection against transmission from mothers to babies. One problem with the studies on pentamer-specific NAbs to date has been that the studies did not compare the pentamer to the other major form of gH/gL, the gH/gL/gO trimer, which is essential for entry into all cell types. Here, we demonstrate that both trimer and pentamer NAbs are frequently found in human transplant patients' and pregnant mothers' sera. Depletion of human sera with trimer caused reductions in NAbs similar to that observed following depletion with the pentamer. The trimer- and pentamer-specific antibodies acted in a synergistic fashion to neutralize HCMV and also to prevent virus cell-to-cell spread. Importantly, there was no correlation between the titers of trimer- and pentamer-specific NAbs and transmission of HCMV from mothers to babies. Therefore, both the trimer and pentamer are important targets of NAbs. Nevertheless, these antibodies do not protect against transmission of HCMV from mothers to babies.


Assuntos
Anticorpos Neutralizantes/farmacologia , Infecções por Citomegalovirus/transmissão , Citomegalovirus/imunologia , Glicoproteínas de Membrana/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Citomegalovirus/química , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/química , Vacinas contra Citomegalovirus/imunologia , Células Epiteliais/imunologia , Feminino , Humanos , Gravidez , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA