RESUMO
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds to CEACAM6, a cell-surface protein that is highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Using chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) to measure the tumor extracellular pH (pHe), we confirmed that L-DOS47 raises the tumor pHe from 4 h to 96 h post injection in acidic tumors (average increase of 0.13 units). Additional studies showed that combining L-DOS47 with anti-PD1 significantly increases the efficacy of the anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks.
RESUMO
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds CEACAM6, a cell surface protein highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Our results demonstrate that combining L DOS47 with anti-PD1 significantly increases the efficacy of anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks.
RESUMO
After an initial response to chemotherapy, tumor relapse is frequent. This event is reflective of both the spatiotemporal heterogeneities of the tumor microenvironment as well as the evolutionary propensity of cancer cell populations to adapt to variable conditions. Because the cause of this adaptation could be genetic or epigenetic, studying phenotypic properties such as tumor metabolism is useful as it reflects molecular, cellular, and tissue-level dynamics. In triple-negative breast cancer (TNBC), the characteristic metabolic phenotype is a highly fermentative state. However, during treatment, the spatial and temporal dynamics of the metabolic landscape are highly unstable, with surviving populations taking on a variety of metabolic states. Thus, longitudinally imaging tumor metabolism provides a promising approach to inform therapeutic strategies, and to monitor treatment responses to understand and mitigate recurrence. Here we summarize some examples of the metabolic plasticity reported in TNBC following chemotherapy and review the current metabolic imaging techniques available in monitoring chemotherapy responses clinically and preclinically. The ensemble of imaging technologies we describe has distinct attributes that make them uniquely suited for a particular length scale, biological model, and/or features that can be captured. We focus on TNBC to highlight the potential of each of these technological advances in understanding evolution-based therapeutic resistance.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Microambiente TumoralRESUMO
The extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH in vivo using pH-sensitive contrast agents. Iopamidol, an iodinated contrast agent, clinically used for computed tomography (CT), contains amide group protons with pH-dependent exchange rates that can reveal the pHe of the tumor microenvironment. In this study, we optimized intraperitoneal (IP) delivery of iopamidol to facilitate longitudinal assessments of orthotopic pancreatic tumor pHe by CEST-MRI. Following IV-infusion and IP-bolus injections, we compared the two protocols for assessing tumor pH. Time-resolved CT imaging was used to evaluate the uptake of iopamidol in the tumor, revealing that IP-bolus delivered a high amount of contrast agent 40 min postinjection, which was similar to the amounts reached with the IV-infusion protocol. As expected, both IP and IV injection protocols produced comparable measurements of tumor pHe, showing no statistically significant difference between groups (p=0.16). In addition, we showed the ability to conduct longitudinal monitoring of tumor pHe using CEST-MRI with the IP injection protocol, revealing a statistically significant increase in tumor pHe following bicarbonate administration (p < 0.001). In conclusion, this study shows the capability to measure pHe using an IP delivery of iopamidol into orthotopic pancreatic tumors, which is important to conduct longitudinal studies.
Assuntos
Iopamidol , Neoplasias Pancreáticas , Humanos , Meios de Contraste , Concentração de Íons de Hidrogênio , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Microambiente TumoralRESUMO
Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.
Assuntos
Aminoácidos/sangue , Ritmo Circadiano/fisiologia , Neoplasias Mamárias Experimentais/fisiopatologia , Neoplasias de Mama Triplo Negativas/fisiopatologia , Aminoácidos/metabolismo , Animais , Neoplasias da Mama/fisiopatologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Transplante de Neoplasias , Projetos PilotoRESUMO
Melatonin is a ubiquitous molecule with a broad spectrum of functions including widespread anti-cancer activities. Identifying how melatonin intervenes in complex molecular signaling at the gene level is essential to guide proper therapies. Using meta-analysis approach, herein we examined the role of melatonin in regulating the expression of 46 microRNAs (miRNAs) and their target genes in breast, oral, gastric, colorectal, and prostate cancers, and glioblastoma. The deregulated miRNA-associated target genes revealed their involvement in the regulation of cellular proliferation, differentiation, apoptosis, senescence, and autophagy. Melatonin changes the expression of miRNA-associated genes in breast, gastric, and oral cancers. These genes are associated with cellular senescence, the hedgehog signaling pathway, cell proliferation, p53 signaling, and the hippo signaling pathway. Conversely, colorectal and prostate cancers as well as glioblastoma and oral carcinoma present a clear pattern of less pronounced changes in the expression of miRNA-associated genes. Most notably, colorectal cancer displayed a unique molecular change in response to melatonin. Considering breast cancer network complexity, we compared the genes found during the meta-analysis with RNA-Seq data from breast cancer-bearing mice treated with melatonin. Mechanistically, melatonin upregulated genes associated with immune responses and apoptotic processes, whereas it downregulated genes involved in cellular aggressiveness/metastasis (eg, mitosis, telomerase activity, and angiogenesis). We further characterized the expression profile of our gene subsets with human breast cancer and found eight upregulated genes and 16 downregulated genes that were appositively correlated with melatonin. Our results pose a multi-dimension network of tumor-associated genes regulated by miRNAs potentially targeted by melatonin.
Assuntos
Regulação Neoplásica da Expressão Gênica , Melatonina/metabolismo , MicroRNAs , Neoplasias , RNA Neoplásico , Animais , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genéticaRESUMO
Melatonin is a pleiotropic anti-cancer molecule that controls cancer growth by multiple mechanisms. RNA-Seq can potentially evaluate therapeutic response and its use in xenograft tumor models can differentiate the changes that occur specifically in tumor cells or in the tumor microenvironment (TME). Melatonin actions were evaluated in a xenograft model of triple-negative breast cancer. Balb/c nude mice bearing MDA-MB-231 tumors were treated with melatonin or vehicle. RNA-Seq was performed on the Illumina HiSeq. 2500 and data were mapped against human and mouse genomes separately to differentiate species-specific expression. Differentially expressed (DE) genes were identified and Weighted Gene Co-expression Network Analysis (WGCNA) was used to detect clusters of highly co-expressed genes. Melatonin treatment reduced tumor growth (p < 0.01). 57 DE genes were identified in murine cells, which represented the TME, and were mainly involved in immune response. The WGCNA detected co-expressed genes in tumor cells and TME, which were related to the immune system among other biological processes. The upregulation of two genes (Tnfaip8l2 and Il1f6) by melatonin was validated in the TME, these genes play important roles in the immune system. Taken together, the transcriptomic data suggests that melatonin anti-tumor actions occur through modulation of TME in this xenograft tumor model.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Melatonina/uso terapêutico , RNA-Seq , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Melatonina/farmacologia , Camundongos , Reprodutibilidade dos Testes , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genéticaRESUMO
Breast cancer progression is composed of multiple steps that are influenced by tumor cell adaptations to survive under acidic conditions in the tumor microenvironment. Regulation of this cell survival behavior is a promising strategy to avoid cancer development. Melatonin is a natural hormone produced and secreted by the pineal gland capable of modulating different biological pathways in cancer. Although the anti-cancer effects of melatonin are currently widespread, its role in the acid tumor microenvironment remains poorly understood. The aim of the present study was to investigate the effect of low pH (6.7) on human breast cancer cell lines MCF-7 and MDA-MB-231, and the effectiveness of melatonin in acute acidosis survival mechanisms. Cell viability was measured by a MTT assay and the protein expression of glucose transporter (GLUT)-1, Ki-67 and caspase-3 was evaluated by immunocytochemical (ICC) analysis following low pH media and melatonin treatment. In both cell lines the viability was decreased after melatonin treatment (1 mM) under acidosis conditions for 24 h. ICC analysis showed a significant increase in GLUT-1 and Ki-67 expression at pH 6.7, and a decrease after treatment with melatonin for 12 and 24 h. The low pH media decreased the expression of caspase-3, which was increased after melatonin treatment for 12 and 24 h. Overall, the results of the present study revealed melatonin treatment increases apoptosis, as indicated by changes in caspase-3, and decreases proliferation, indicated by changes to Ki-67, and GLUT-1 protein expression under acute acidosis conditions in breast cancer cell lines.
RESUMO
Mammary tumorigenesis can be modulated by melatonin, which has oncostatic action mediated by multiple mechanisms, including the inhibition of the activity of transcription factors such as NF-κB and modulation of interleukins (ILs) expression. IL-25 is an active cytokine that induces apoptosis in tumor cells due to differential expression of its receptor (IL-17RB). IL-17B competes with IL-25 for binding to IL-17RB in tumor cells, promoting tumorigenesis. This study purpose is to address the possibility of engaging IL-25/IL-17RB signaling to enhance the effect of melatonin on breast cancer cells. Breast cancer cell lines were cultured monolayers and 3D structures and treated with melatonin, IL-25, siIL-17B, each alone or in combination. Cell viability, gene and protein expression of caspase-3, cleaved caspase-3 and VEGF-A were performed by qPCR and immunofluorescence. In addition, an apoptosis membrane array was performed in metastatic cells. Treatments with melatonin and IL-25 significantly reduced tumor cells viability at 1mM and 1ng/mL, respectively, but did not alter cell viability of a non-tumorigenic epithelial cell line (MCF-10A). All treatments, alone and combined, significantly increased cleaved caspase-3 in tumor cells grown as monolayers and 3D structures (p<0.05). Semi-quantitative analysis of apoptosis pathway proteins showed an increase of CYTO-C, DR6, IGFBP-3, IGFBP-5, IGFPB-6, IGF-1, IGF-1R, Livin, P21, P53, TNFRII, XIAP and hTRA proteins and reduction of caspase-3 (p<0.05) after melatonin treatment. All treatments reduced VEGF-A protein expression in tumor cells (p<0.05). Our results suggest therapeutic potential, with oncostatic effectiveness, pro-apoptotic and anti-angiogenic properties for melatonin and IL-25-driven signaling in breast cancer cells.
Assuntos
Neoplasias da Mama/patologia , Interleucina-17/metabolismo , Melatonina/metabolismo , Receptores de Interleucina/metabolismo , Apoptose/fisiologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/administração & dosagem , Melatonina/administração & dosagem , Melatonina/farmacologia , Neovascularização Patológica/metabolismo , Reação em Cadeia da Polimerase , Receptores de Interleucina-17 , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
The occurrence of metastasis, an important breast cancer prognostic factor, depends on cell migration/invasion mechanisms, which can be controlled by regulatory and effector molecules such as Rho-associated kinase protein (ROCK-1). Increased expression of this protein promotes tumor growth and metastasis, which can be restricted by ROCK-1 inhibitors. Melatonin has shown oncostatic, antimetastatic, and anti-angiogenic effects and can modulate ROCK-1 expression. Metastatic and nonmetastatic breast cancer cell lines were treated with melatonin as well as with specific ROCK-1 inhibitor (Y27632). Cell viability, cell migration/invasion, and ROCK-1 gene expression and protein expression were determined in vitro. In vivo lung metastasis study was performed using female athymic nude mice treated with either melatonin or Y27832 for 2 and 5 wk. The metastases were evaluated by X-ray computed tomography and single photon emission computed tomography (SPECT) and by immunohistochemistry for ROCK-1 and cytokeratin proteins. Melatonin and Y27632 treatments reduced cell viability and invasion/migration of both cell lines and decreased ROCK-1 gene expression in metastatic cells and protein expression in nonmetastatic cell line. The numbers of 'hot' spots (lung metastasis) identified by SPECT images were significantly lower in treated groups. ROCK-1 protein expression also was decreased in metastatic foci of treated groups. Melatonin has shown to be effective in controlling metastatic breast cancer in vitro and in vivo, not only via inhibition of the proliferation of tumor cells but also through direct antagonism of metastatic mechanism of cells rendered by ROCK-1 inhibition. When Y27632 was used, the effects were similar to those found with melatonin treatment.
Assuntos
Amidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Melatonina/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Associadas a rho/metabolismoRESUMO
Angiogenesis is the process of new blood vessel formation, regulated by a number of pro- and antiangiogenic factors and usually begins in response to hypoxia. Exogenous administration of melatonin has shown numerous anti-tumor effects and appears to inhibit tumor angiogenesis. However, many factors involved in the anti-angiogenic effect of melatonin are still under investigation. Here, we evaluate the effects of melatonin on cell viability and expression of angiogenic factors in MCF-7 and MDA-MB-231 breast cancer cells under hypoxic conditions. Cell viability was investigated by MTT and gene and protein expression of the hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF-A) were verified by qPCR and immunocytochemistry after melatonin treatment (1 mM) under hypoxic conditions. Additionally, a protein array with 20 different cytokines/factors was performed on tumor cell lysates. The results showed that 1 mM of melatonin reduced the viability of MCF-7 and MDA-MB-231 cells (p < .05). This treatment also decreased both gene and protein expression of HIF-1α and VEGF-A under hypoxic conditions (p < .05). Among the proteins evaluated by protein array, melatonin treatment during hypoxia reduced VEGF-C, VEGFR receptors (VEGFR2 and VEGFR3), matrix metalloproteinase 9 (MMP9) and Angiogenin in MCF-7 cells. In MDA-MB-231 cells, a significant decrease was observed in VEGFR2, epidermal growth factor receptor (EGFR) and Angiogenin (p < .05). Taken together, these results showed that melatonin acts in the regulation of angiogenic factors in breast tumor cells and suggests an anti-angiogenic activity, particularly under hypoxic conditions.
Assuntos
Inibidores da Angiogênese/farmacologia , Antioxidantes/farmacologia , Neoplasias da Mama/irrigação sanguínea , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Melatonina/farmacologia , Neovascularização Patológica/metabolismo , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Receptores ErbB/metabolismo , Feminino , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , Ribonuclease Pancreático/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio VascularRESUMO
The formation of a new blood vessel is stimulated by angiogenic factors. Curcumin, which is the active ingredient of the spice plant Curcuma longa L and is used as food and traditional medicine, has shown anticancer effects against different types of cancers. We evaluated the effects of curcumin on angiogenesis/pro-angiogenic factors in a mouse model of human breast cancer. Cell viability was measured by the MTT assay after curcumin treatment in triple-negative breast cancer cells (MDA-MB-231). For the in vivo study, human breast cancer was induced in athymic mice and treated with 300 mg/kg/day of curcumin administered intraperitoneally. Tumor size was measured weekly, and the animals underwent single photon emission computed tomography (SPECT) scanning with Tc-99m tagged VEGF-c to detect the in vivo expression of VEGFR2/3. In addition, the expression of proangiogenic/ growth factors in the tumor extracts was evaluated by a membrane antibody array. Histological analysis was performed to confirm the effect of curcumin on neovascularization. The MTT assay showed that curcumin significantly reduced the cell viability of MDA-MB-231 cells. In breast cancer xenografts, curcumin treatment led to a decrease in tumor volume and cell proliferation (Ki-67) compared with the vehicle treated group. Tc-99m-HYNIC-VEGF-c-SPECT imaging showed decreased uptake to the tumor, which may indicate a lower expression of VEGFR2/3 in curcumin treated tumors; however, a statistically significant difference was not achieved (p>0.05). Additionally, curcumin treatment showed a significantly low level of expression of pro-angiogenic factors (p<0.05) and a decrease in micro-vessel density (vWF) in animals compared with that of vehicle treated tumors. In conclusion, curcumin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.
Assuntos
Neoplasias da Mama/patologia , Curcumina/uso terapêutico , Modelos Biológicos , Neovascularização Patológica , Animais , Neoplasias da Mama/irrigação sanguínea , Linhagem Celular Tumoral , Feminino , Xenoenxertos , HumanosRESUMO
Mammary tumors are the most common type of tumor in dogs, with approximately half of these tumors being malignant. Hypoxia, characterized by oxygen levels below normal, is a known adverse factor to cancer treatment. The hypoxia-inducible factor 1α (HIF-1α) is a central regulator of the pathophysiological response of mammalian cells to low oxygen levels. HIF-1α activates the transcription of vascular endothelial growth factor (VEGF), which in turn promotes angiogenesis through its ability to stimulate the growth, migration and invasion of endothelial cells to form new blood vessels, contributing to tumor progression. In this study, we evaluated the serum concentration and gene expression of VEGF and HIF-1α linking them with clinicopathological parameters and survival of dogs with mammary tumors in order to infer the possible prognostic value of these factors. We collected blood and tumor fragments of 24 female dogs with malignant mammary tumors (study group) and 26 non-affected female dogs (control group) to verify the gene expression of VEGF and HIF-1α by quantitative real-time PCR (qPCR) and the serum levels by ELISA (enzyme-linked immunosorbent). The results showed high serum levels of VEGF in the study group and its correlation between abundant vascularization, lymph node involvement, metastasis, death rate and low survival (p<0.05). The serum percentage of HIF-1α in female dogs with mammary neoplasia was lower than that in the control group and higher in female dogs with tumor metastasis and history of tumor recurrence (p<0.05). Regarding gene expression, there was a gene overexpression of VEGFA in female dogs with poor outcome, in contrast to the gene underexpression of HIF-1A. Taken together, these results suggested that VEGF is important in tumor progression and can be used as a potential prognostic marker in the clinic and may be useful in predicting tumor progression in dogs with mammary neoplasia.
Assuntos
Carcinoma/genética , Doenças do Cão/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Mamárias Animais/genética , Neovascularização Patológica/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Carcinoma/mortalidade , Carcinoma/patologia , Doenças do Cão/mortalidade , Doenças do Cão/patologia , Cães , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linfonodos/patologia , Neoplasias Mamárias Animais/mortalidade , Neoplasias Mamárias Animais/patologia , Estadiamento de Neoplasias , Neovascularização Patológica/patologia , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Mammary neoplasias are the most common tumors observed in female dogs. Identification of these tumors is valuable in order to identify beneficial therapeutic agents as alternative treatments for this tumor type. Oral administration of melatonin appears to exert an oncostatic effect on mammary neoplasia and may have a possible mechanism of action through its interaction with estrogen receptors on epithelial cells. Hence, we analyzed the potential therapeutic value of melatonin in tumors that are estrogen-dependent or -independent, and established a relationship of its action with the expression of the melatonin receptors MT1 and MT2. Furthermore, we analyzed the rate of cell proliferation and apoptosis after treatment with melatonin. Cell cultures were performed using 10 canine mammary tumor fragments and were divided into estrogen receptor (ER)-positive and ER-negative tumors. The results showed that both ER-positive and ER-negative tumors had decreased cell viability and proliferation after treatment with melatonin (p<0.05), although treatment was more effective in the ER-positive tumors. Analysis of the relative expression of the MT1 and MT2 genes by quantitative PCR was performed and the data were compared with the expression of ER in 24 canine mammary tumors and the cellular response to melatonin in 10 samples. MT1 was overexpressed in ER-positive tumors (p<0.05), whereas MT2 was not expressed. Furthermore, melatonin treatment in ER-positive tumors showed an efficient oncostatic effect by inhibiting cell viability and proliferation and inducing apoptosis. These results suggest that melatonin decreased neoplastic mammary cell proliferation and viability and induced apoptosis, with greater efficacy in ER-positive tumors that have a high expression of melatonin receptor MT1. This is a strong evidence for the use of melatonin as a therapeutic agent for estrogen-dependent canine mammary tumors.
Assuntos
Antineoplásicos/farmacologia , Doenças do Cão/tratamento farmacológico , Neoplasias Mamárias Animais/tratamento farmacológico , Melatonina/farmacologia , Animais , Apoptose , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doenças do Cão/metabolismo , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Expressão Gênica , Neoplasias Mamárias Animais/metabolismo , Cultura Primária de Células , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Células Tumorais CultivadasRESUMO
BACKGROUND: Oral cancer is the most common type of head and neck cancer and its high rate of mortality and morbidity is closely related to the processes of angiogenesis and tumor metastasis. The overexpression of the pro-angiogenic genes, HIF-1α and VEGF, and pro-metastatic gene, ROCK-1, are associated with unfavorable prognosis in oral carcinoma. Melatonin has oncostatic, antiangiogenic and antimetastatic properties in several types of neoplasms, although its relationship with oral cancer has been little explored. This study aims to analyze the expression of the genes HIF-1α, VEGF and ROCK-1 in cell lines of squamous cell carcinoma of the tongue, after treatment with melatonin. METHODS: SCC9 and SCC25 cells were cultured and cell viability was assessed by MTT assay, after treatment with 100 µM of CoCl2 to induce hypoxia and with melatonin at different concentrations. The analysis of quantitative RT-PCR and the immunocytochemical analysis were performed to verify the action of melatonin under conditions of normoxia and hypoxia, on gene and protein expression of HIF-1α, VEGF and ROCK-1. RESULTS: The MTT assay showed a decrease in cell viability in both cell lines, after the treatment with melatonin. The analysis of quantitative RT-PCR indicated an inhibition of the expression of the pro-angiogenic genes HIF-1α (P < 0.001) and VEGF (P < 0.001) under hypoxic conditions, and of the pro-metastatic gene ROCK-1 (P < 0.0001) in the cell line SCC9, after treatment with 1 mM of melatonin. In the immunocytochemical analysis, there was a positive correlation with gene expression data, validating the quantitative RT-PCR results for cell line SCC9. Treatment with melatonin did not demonstrate inhibition of the expression of genes HIF-1α, VEGF and ROCK-1 in line SCC25, which has different molecular characteristics and greater degree of malignancy when compared to the line SCC9. CONCLUSION: Melatonin affects cell viability in the SCC9 and SCC25 lines and inhibits the expression of the genes HIF-1α, VEGF and ROCK-1 in SCC9 line. Additional studies may confirm the potential therapeutic effect of melatonin in some subtypes of oral carcinoma.
Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Melatonina/farmacologia , Neoplasias Bucais/patologia , Neovascularização Patológica/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metástase Neoplásica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases Associadas a rho/metabolismoRESUMO
Breast cancer is the most common tumor in women and it has high mortality mainly due to the occurrence of tumor metastasis. Both the processes of cell migration and anchorage to the substrate are essential for the development of metastasis. These processes occur by rearrangements of the actin cytoskeleton, regulated by Rho-associated protein kinase 1 (ROCK-1). The degradation of the extracellular matrix, influenced by metalloproteinase 9 (MMP-9) also exerts greater cell invasiveness. The present study evaluated the ROCK-1 and MMP-9 proteins using an immunohistochemical method through the selection of invasive ductal breast carcinoma. The protein expression was correlated to clinicopathological parameters and overall survival of the patients. High expression of the ROCK-1 protein was correlated statistically to the status of lymph nodes (p=0.007) and showed variable expression in different clinical stages of the tumor. MMP-9 showed a strong immunostaining in patients with metastasis that had died, whereas there was no marker in normal breast tissues. In addition, 46.6% of patients classified as poor prognosis showed high expression of ROCK-1 and MMP-9 protein and another 40.0% just showed high expression of MMP-9. Thus, the differential expression of ROCK-1 and MMP-9 proteins suggests their potential use as prognostic markers in breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Metaloproteinase 9 da Matriz/metabolismo , Quinases Associadas a rho/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Pessoa de Meia-Idade , PrognósticoRESUMO
As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.