Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 1(1): 8-12, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33305272

RESUMO

Using a covalent chemical probe and X-ray crystallography coupled to nuclear magnetic resonance data, we elucidated the dynamic molecular basis of protein recognition between the carrier protein and adenylation domain in pyoluteorin biosynthesis. These findings reveal a unique binding mode, which contrasts previously solved carrier protein and partner protein interfaces.

2.
Elife ; 92020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32808929

RESUMO

Genome replication is initiated from specific origin sites established by dynamic events. The Origin Recognition Complex (ORC) is necessary for orchestrating the initiation process by binding to origin DNA, recruiting CDC6, and assembling the MCM replicative helicase on DNA. Here we report five cryoEM structures of the human ORC (HsORC) that illustrate the native flexibility of the complex. The absence of ORC1 revealed a compact, stable complex of ORC2-5. Introduction of ORC1 opens the complex into several dynamic conformations. Two structures revealed dynamic movements of the ORC1 AAA+ and ORC2 winged-helix domains that likely impact DNA incorporation into the ORC core. Additional twist and pinch motions were observed in an open ORC conformation revealing a hinge at the ORC5·ORC3 interface that may facilitate ORC binding to DNA. Finally, a structure of ORC was determined with endogenous DNA bound in the core revealing important differences between human and yeast origin recognition.


Assuntos
Complexo de Reconhecimento de Origem/química , Estrutura Secundária de Proteína , Microscopia Crioeletrônica
3.
Nat Prod Rep ; 37(3): 355-379, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31593192

RESUMO

Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Ciclopropanos/química , Ciclopropanos/metabolismo , Hidroxilação , Lactamas/metabolismo , Macrolídeos/metabolismo , Netropsina/biossíntese , Peptídeo Sintases/genética , Prolina/metabolismo , Mapas de Interação de Proteínas , Pirróis/química , Pirróis/metabolismo , Tiazóis/metabolismo , Tionas/metabolismo
4.
J Am Chem Soc ; 141(30): 11765-11769, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31317744

RESUMO

We describe the design, synthesis, and antitumor activity of an 18 carbon α,ω-dicarboxylic acid monoconjugated via an ester linkage to paclitaxel (PTX). This 1,18-octadecanedioic acid-PTX (ODDA-PTX) prodrug readily forms a noncovalent complex with human serum albumin (HSA). Preservation of the terminal carboxylic acid moiety on ODDA-PTX enables binding to HSA in the same manner as native long-chain fatty acids (LCFAs), within hydrophobic pockets, maintaining favorable electrostatic contacts between the ω-carboxylate of ODDA-PTX and positively charged amino acid residues of the protein. This carrier strategy for small molecule drugs is based on naturally evolved interactions between LCFAs and HSA, demonstrated here for PTX. ODDA-PTX shows differentiated pharmacokinetics, higher maximum tolerated doses and increased efficacy in vivo in multiple subcutaneous murine xenograft models of human cancer, as compared to two FDA-approved clinical formulations, Cremophor EL-formulated paclitaxel (crPTX) and Abraxane (nanoparticle albumin-bound (nab)-paclitaxel).


Assuntos
Antineoplásicos/farmacologia , Ácidos Dicarboxílicos/farmacologia , Paclitaxel/farmacologia , Pró-Fármacos/farmacologia , Albumina Sérica Humana/química , Ácidos Esteáricos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Paclitaxel/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Ácidos Esteáricos/química
5.
Biochemistry ; 56(40): 5269-5273, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28920687

RESUMO

In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity. Characterization of the novel NMR solution structure of holo-PigG and molecular dynamics simulations of holo-PltL and holo-PigG revealed differences in structures and dynamics of these carrier proteins. NMR titration experiments revealed perturbations of the chemical shifts of the loop 1 residues of these peptidyl carrier proteins upon their interaction with the adenylation domain. These experiments revealed a key region for the protein-protein interaction. Mutational studies supported the role of loop 1 in molecular recognition, as mutations to this region of the peptidyl carrier proteins significantly modulated their activities.


Assuntos
Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Peptídeo Sintases/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
6.
Chembiochem ; 17(17): 1598-601, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27271974

RESUMO

Diversity in non-ribosomal peptide and polyketide secondary metabolism is facilitated by interactions between biosynthetic domains with discrete monomer loading and their cognate tailoring enzymes, such as oxidation or halogenation enzymes. The cooperation between peptidyl carrier proteins and flavin-dependent enzymes offers a specialized strategy for monomer selectivity for oxidization of small molecules from within a complex cellular milieu. In an effort to study this process, we have developed fluorescent probes to selectively label aerobic flavin-dependent enzymes. Here we report the preparation and implementation of these tools to label oxidase, monooxygenase, and halogenase flavin-dependent enzymes.


Assuntos
Flavinas/metabolismo , Corantes Fluorescentes/química , Oxigenases de Função Mista/metabolismo , Oxirredutases/metabolismo , Flavinas/química , Corantes Fluorescentes/metabolismo , Oxigenases de Função Mista/química , Estrutura Molecular , Oxirredutases/química
7.
J Am Chem Soc ; 137(36): 11546-9, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26340431

RESUMO

Type II nonribosomal peptide synthetases (NRPS) generate exotic amino acid derivatives that, combined with additional pathways, form many bioactive natural products. One family of type II NRPSs produce pyrrole moieties, which commonly arise from proline oxidation while tethered to a conserved, type II peptidyl carrier protein (PCP), as exemplified by PltL in the biosynthesis of pyoluteorin. We sought to understand the structural role of pyrrole PCPs in substrate and protein interactions through the study of pyrrole analogs tethered to PltL. Solution-phase NMR structural analysis revealed key interactions in residues of helix II and III with a bound pyrrole moiety. Conservation of these residues among PCPs in other pyrrole containing pathways suggests a conserved mechanism for formation, modification, and incorporation of pyrrole moieties. Further NOE analysis provided a unique pyrrole binding motif, offering accurate substrate positioning within the cleft between helices II and III. The overall structure resembles other PCPs but contains a unique conformation for helix III. This provides evidence of sequestration by the PCP of aromatic pyrrole substrates, illustrating the importance of substrate protection and regulation in type II NRPS systems.


Assuntos
Fenóis/química , Pirróis/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos , Conformação Proteica
8.
J Am Chem Soc ; 136(48): 16792-9, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25406716

RESUMO

The mechanistic details of many polyketide synthases (PKSs) remain elusive due to the instability of transient intermediates that are not accessible via conventional methods. Here we report an atom replacement strategy that enables the rapid preparation of polyketone surrogates by selective atom replacement, thereby providing key substrate mimetics for detailed mechanistic evaluations. Polyketone mimetics are positioned on the actinorhodin acyl carrier protein (actACP) to probe the underpinnings of substrate association upon nascent chain elongation and processivity. Protein NMR is used to visualize substrate interaction with the actACP, where a tetraketide substrate is shown not to bind within the protein, while heptaketide and octaketide substrates show strong association between helix II and IV. To examine the later cyclization stages, we extended this strategy to prepare stabilized cyclic intermediates and evaluate their binding by the actACP. Elongated monocyclic mimics show much longer residence time within actACP than shortened analogs. Taken together, these observations suggest ACP-substrate association occurs both before and after ketoreductase action upon the fully elongated polyketone, indicating a key role played by the ACP within PKS timing and processivity. These atom replacement mimetics offer new tools to study protein and substrate interactions and are applicable to a wide variety of PKSs.


Assuntos
Cetonas/metabolismo , Policetídeo Sintases/química , Cetonas/química , Modelos Moleculares , Conformação Molecular , Policetídeo Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA