Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303117

RESUMO

MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.


Assuntos
Marchantia , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Marchantia/genética , Marchantia/metabolismo , Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Genitália/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Mol Biol ; 113(4-5): 121-142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37991688

RESUMO

A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Embriófitas , Marchantia , MicroRNAs , Marchantia/genética , Marchantia/metabolismo , Plantas/genética , MicroRNAs/genética , Evolução Biológica , Arabidopsis/genética , Embriófitas/genética , Proteínas de Arabidopsis/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
3.
Physiol Plant ; 175(5): e14018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882256

RESUMO

MicroRNAs are small, noncoding RNA molecules that regulate the expression of their target genes. The MIR444 gene family is present exclusively in monocotyledons, and microRNAs444 from this family have been shown to target certain MADS-box transcription factors in rice and barley. We identified three barley MIR444 (MIR444a/b/c) genes and comprehensively characterised their structure and the processing pattern of the primary transcripts (pri-miRNAs444). Pri-microRNAs444 undergo extensive alternative splicing, generating functional and nonfunctional pri-miRNA444 isoforms. We show that barley pri-miRNAs444 contain numerous open reading frames (ORFs) whose transcripts associate with ribosomes. Using specific antibodies, we provide evidence that selected ORFs encoding PEP444a within MIR444a and PEP444c within MIR444c are expressed in barley plants. Moreover, we demonstrate that CRISPR-associated endonuclease 9 (Cas9)-mediated mutagenesis of the PEP444c-encoding sequence results in a decreased level of PEP444 transcript in barley shoots and roots and a 5-fold reduced level of mature microRNA444c in roots. Our observations suggest that PEP444c encoded by the MIR444c gene is involved in microRNA444c biogenesis in barley.


Assuntos
Hordeum , MicroRNAs , Hordeum/genética , Hordeum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo
4.
Bio Protoc ; 13(18): e4824, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753471

RESUMO

Here, we present an approach combining fluorescence in situ hybridization (FISH) and immunolabeling for localization of pri-miRNAs in isolated nuclei of A. thaliana. The presented method utilizes specific DNA oligonucleotide probes, modified by addition of digoxigenin-labeled deoxynucleotides to its 3' hydroxyl terminus by terminal deoxynucleotidyl transferase (TdT). The probes are then detected by immunolabeling of digoxigenin (DIG) using specific fluorescent-labeled antibodies to visualize hybridized probes. Recently, we have applied this method to localize pri-miRNA156a, pri-miRNA163, pri-miRNA393a, and pri-miRNA414 in the nuclei isolated from leaves of 4-week-old A. thaliana. The present approach can be easily implemented to analyze nuclear distribution of diverse RNA classes, including mRNAs and pri-miRNAs in isolated fixed cells or nuclei from plant.

5.
Biochim Biophys Acta Gen Subj ; 1867(8): 130376, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150226

RESUMO

In plants, microRNA biogenesis involves the complex assembly of molecular processes that are mostly governed by three proteins: RNase III protein DCL1 and two RNA binding proteins, SERRATE and HYL1. HYL1 protein is a double stranded RNA binding protein that is needed for the precise excision of miRNA/miRNA* duplex from the stem-loop containing primary miRNA gene transcripts. Moreover, HYL1 protein partners with HSP90 and CARP9 proteins to load the miRNA molecules onto the AGO1 endonuclease. HYL1 protein as a crucial player in the biogenesis pathway is regulated by its phosphorylation status to fine tune the levels of miRNA in various physiological conditions. HYL1 protein consists of two dsRNA binding domains (dsRBD) that are involved in RNA binding and dimerization and a C-terminal disordered tail of unknown function. Although the spatial structures of the individual dsRBDs have been determined there is a lack of information about the behaviour and structure of the full length protein. Using small the angle X-ray scattering (SAXS) technique we investigated the structure and dynamic of the HYL1 protein from Arabidopsis thaliana in solution. We show that the C-terminal domain is disordered and dynamic in solution and that HYL1 protein dimerization is dependent on the concentration. HYL1 protein lacking a C-terminal tail and a nuclear localisation signal (NLS) fragment is almost exclusively monomeric and similarly to full-length protein has a dynamic nature in solution. Our results point for the first time to the role of the C-terminal fragment in stabilisation of HYL1 dimer formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Espalhamento a Baixo Ângulo , Proteínas de Ciclo Celular/metabolismo , Difração de Raios X , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
J Exp Bot ; 74(14): 3975-3986, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37076273

RESUMO

Regulation of gene expression is a complicated process based on the coordination of many different pathways, including epigenetic control of chromatin state, transcription, RNA processing, export of mature transcripts to the cytoplasm, and their translation into proteins. In recent years, with the development of high-throughput sequencing techniques, the importance of RNA modifications in gene expression has added another layer to this regulatory landscape. To date, >150 different types of RNA modifications have been found. Most RNA modifications, such as N6-methyladenosine (m6A) and pseudouridine (Ψ), were initially identified in highly abundant structural RNAs, such as rRNAs, tRNAs, and small nuclear RNAs (snRNAs). Current methods provide the opportunity to identify new types of modifications and to precisely localize them not only in highly expressed RNAs but also in mRNA and small RNA molecules. The presence of modified nucleotides in protein-coding transcripts can affect their stability, localization, and further steps of pre-mRNA maturation. Finally, it may affect the quality and quantity of protein synthesis. In plants, the epitranscriptomic field is still narrow, but the number of reports is growing rapidly. This review presents highlights and perspectives of plant epitranscriptomic modifications, focusing on various aspects of modifications of RNA polymerase II transcripts and their influence on RNA fate.


Assuntos
RNA Polimerase II , RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA/química , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA , Adenosina/metabolismo
7.
Plant Cell Physiol ; 64(6): 571-582, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37040378

RESUMO

Hyponastic Leaves 1 (HYL1) [also known as Double-stranded RNA-Binding protein 1 (DRB1)] is a double-stranded RNA-binding protein involved in microRNA (miRNA) processing in plants. It is a core component of the Microprocessor complex and enhances the efficiency and precision of miRNA processing by the Dicer-Like 1 protein. In this work, we report a novel function of the HYL1 protein in the transcription of miRNA (MIR) genes. HYL1 colocalizes with RNA polymerase II and affects its distribution along MIR genes. Moreover, proteomic experiments revealed that the HYL1 protein interacts with many transcription factors. Finally, we show that the action of HYL1 is not limited to MIR genes and impacts the expression of many other genes, a majority of which are involved in plastid organization. These discoveries indicate HYL1 as an additional player in gene regulation at the transcriptional level, independent of its role in miRNA biogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteômica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Trends Plant Sci ; 28(7): 841-853, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019716

RESUMO

The SERRATE (SE) protein is involved in the processing of RNA polymerase II (RNAPII) transcripts. It is associated with different complexes engaged in different aspects of plant RNA metabolism, including assemblies involved in transcription, splicing, polyadenylation, miRNA biogenesis, and RNA degradation. SE stability and interactome properties can be influenced by phosphorylation. SE exhibits an intriguing liquid-liquid phase separation property that may be important in the assembly of different RNA-processing bodies. Therefore, we propose that SE seems to participate in the coordination of different RNA-processing steps and can direct the fate of transcripts, targeting them for processing or degradation when they cannot be properly processed or are synthesized in excess.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo , RNA/metabolismo , MicroRNAs/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Front Plant Sci ; 14: 1124785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950348

RESUMO

MicroRNAs (miRNAs) are major regulators of gene expression during plant development under normal and stress conditions. In this study, we analyzed the expression of 150 conserved miRNAs during drought stress applied to barley ready to flower. The dynamics of miRNAs expression was also observed after rewatering. Target messenger RNA (mRNAs) were experimentally identified for all but two analyzed miRNAs, and 41 of the targets were not reported before. Drought stress applied to barley induced accelerated flowering coordinated by a pair of two differently expressed miRNAs originating from a single precursor: hvu-miR172b-3p and hvu-miR172b-5p. Increased expression of miRNA172b-3p during drought leads to the downregulation of four APETALA2(AP2)-like genes by their mRNA cleavage. In parallel, the downregulation of the miRNA172b-5p level results in an increased level of a newly identified target, trehalose-6-phosphate synthase, a key enzyme in the trehalose biosynthesis pathway. Therefore, drought-treated plants have higher trehalose content, a known osmoprotectant, whose level is rapidly dropping after watering. In addition, trehalose-6-phosphate, an intermediate of the trehalose synthesis pathway, is known to induce flowering. The hvu-miRNA172b-5p/trehalose-6-phosphate synthase and hvu-miRNA172b-3p/AP2-like create a module leading to osmoprotection and accelerated flowering induction during drought.

10.
Plants (Basel) ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679055

RESUMO

MicroRNAs are small RNAs, 20-22 nt long, the main role of which is to downregulate gene expression at the level of mRNAs. MiRNAs are fundamental regulators of plant growth and development in response to internal signals as well as in response to abiotic and biotic factors. Therefore, the deficiency or excess of individual miRNAs is detrimental to particular aspects of a plant's life. In consequence, the miRNA levels must be appropriately adjusted. To obtain proper expression of each miRNA, their biogenesis is controlled at multiple regulatory layers. Here, we addressed processes discovered to influence miRNA steady-state levels, such as MIR transcription, co-transcriptional pri-miRNA processing (including splicing, polyadenylation, microprocessor assembly and activity) and miRNA-encoded peptides synthesis. MiRNA stability, RISC formation and miRNA export out of the nucleus and out of the plant cell also define the levels of miRNAs in various plant tissues. Moreover, we show the evolutionary conservation of miRNA biogenesis core proteins across the plant kingdom.

11.
Physiol Plant ; 174(5): e13775, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36050907

RESUMO

Drought is one of the main climate threats limiting crop production. Potato is one of the four most important food crop species worldwide and is sensitive to water shortage. The CBP80 gene was shown to affect Arabidopsis and potato responses to drought by regulating the level of microRNA159 and, consequently, the levels of the MYB33 and MYB101 transcription factors (TFs). Here, we show that three MYB TFs, MYB33, MYB65, and MYB101, are involved in plant responses to water shortage. Their downregulation in Arabidopsis causes stomatal hyposensitivity to abscisic acid (ABA), leading to reduced tolerance to drought. Transgenic Arabidopsis and potato plants overexpressing these genes, with a mutated recognition site in miR159, show hypersensitivity to ABA and relatively high tolerance to drought conditions. Thus, the MYB33, MYB65, and MYB101 genes may be potential targets for innovative breeding to obtain crops with relatively high tolerance to drought.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Solanum tuberosum , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Secas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Água/metabolismo , Transdução de Sinais/genética
12.
Plant Cell ; 34(12): 4920-4935, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36087009

RESUMO

In plants, microRNA (miRNA) biogenesis involves cotranscriptional processing of RNA polymerase II (RNAPII)-generated primary transcripts by a multi-protein complex termed the microprocessor. Here, we report that Arabidopsis (Arabidopsis thaliana) PRE-MRNA PROCESSING PROTEIN 40 (PRP40), the U1 snRNP auxiliary protein, positively regulates the recruitment of SERRATE, a core component of the plant microprocessor, to miRNA genes. The association of DICER-LIKE1 (DCL1), the microprocessor endoribonuclease, with chromatin was altered in prp40ab mutant plants. Impaired cotranscriptional microprocessor assembly was accompanied by RNAPII accumulation at miRNA genes and retention of miRNA precursors at their transcription sites in the prp40ab mutant plants. We show that cotranscriptional microprocessor assembly, regulated by AtPRP40, positively affects RNAPII transcription of miRNA genes and is important to reach the correct levels of produced miRNAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Microcomputadores , Cromatina/genética , Cromatina/metabolismo , Processamento Pós-Transcricional do RNA/genética
13.
Front Plant Sci ; 13: 950796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172555

RESUMO

Nitrogen (N) is an important element for plant growth and development. Although several studies have examined plants' response to N deficiency, studies on plants' response to excess N, which is common in fertilizer-based agrosystems, are limited. Therefore, the aim of this study was to examine the response of barley to excess N conditions, specifically the root response. Additionally, genomic mechanism of excess N response in barley was elucidated using transcriptomic technologies. The results of the study showed that barley MADS27 transcription factor was mainly expressed in the roots and its gene contained N-responsive cis-regulatory elements in the promoter region. Additionally, there was a significant decrease in HvMADS27 expression under excess N condition; however, its expression was not significantly affected under low N condition. Phenotypic analysis of the root system of HvMADS27 knockdown and overexpressing barley plants revealed that HvMADS27 regulates barley root architecture under excess N stress. Further analysis of wild-type (WT) and transgenic barley plants (hvmads27 kd and hvmads27 c-Myc OE) revealed that HvMADS27 regulates the expression of HvBG1 ß-glucosidase, which in turn regulates abscisic acid (ABA) level in roots. Overall, the findings of this study showed that HvMADS27 expression is downregulated in barley roots under excess N stress, which induces HvBG1 expression, leading to the release of ABA from ABA-glucose conjugate, and consequent shortening of the roots.

14.
Genome Biol ; 23(1): 149, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799267

RESUMO

BACKGROUND: Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis. RESULTS: We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts-twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage. CONCLUSIONS: AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species.


Assuntos
Arabidopsis , Transcriptoma , Processamento Alternativo , Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , RNA-Seq , Análise de Sequência de RNA/métodos
15.
Nat Plants ; 8(4): 402-418, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35449404

RESUMO

In most organisms, the maturation of nascent RNAs is coupled to transcription. Unlike in animals, the RNA polymerase II (RNAPII) transcribes microRNA genes (MIRNAs) as long and structurally variable pri-miRNAs in plants. Current evidence suggests that the miRNA biogenesis complex assembly initiates early during the transcription of pri-miRNAs in plants. However, it is unknown whether miRNA processing occurs co-transcriptionally. Here, we used native elongating transcript sequencing data and imaging techniques to demonstrate that plant miRNA biogenesis occurs coupled to transcription. We found that the entire biogenesis occurs co-transcriptionally for pri-miRNAs processed from the loop of the hairpin but requires a second nucleoplasmic step for those processed from the base. Furthermore, we found that co- and post-transcriptional miRNA processing mechanisms co-exist for most miRNAs in a dynamic balance. Notably, we discovered that R-loops, formed near the transcription start site region of MIRNAs, promote co-transcriptional pri-miRNA processing. Furthermore, our results suggest the neofunctionalization of co-transcriptionally processed miRNAs, boosting countless regulatory scenarios.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/genética , Estruturas R-Loop , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA
16.
J Exp Bot ; 73(13): 4528-4545, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35275209

RESUMO

MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules, 18-24 nucleotides long, that control multiple gene regulatory pathways via post-transcriptional gene silencing in eukaryotes. To develop a comprehensive picture of the evolutionary history of miRNA biogenesis and action in land plants, studies on bryophyte representatives are needed. Here, we review current understanding of liverwort MIR gene structure, miRNA biogenesis, and function, focusing on the simple thalloid Pellia endiviifolia and the complex thalloid Marchantia polymorpha. We review what is known about conserved and non-conserved miRNAs, their targets, and the functional implications of miRNA action in M. polymorpha and P. endiviifolia. We note that most M. polymorpha miRNAs are encoded within protein-coding genes and provide data for 23 MIR gene structures recognized as independent transcriptional units. We identify M. polymorpha genes involved in miRNA biogenesis that are homologous to those identified in higher plants, including those encoding core microprocessor components and other auxiliary and regulatory proteins that influence the stability, folding, and processing of pri-miRNAs. We analyzed miRNA biogenesis proteins and found similar domain architecture in most cases. Our data support the hypothesis that almost all miRNA biogenesis factors in higher plants are also present in liverworts, suggesting that they emerged early during land plant evolution.


Assuntos
Embriófitas , Hepatófitas , MicroRNAs , Embriófitas/genética , Embriófitas/metabolismo , Hepatófitas/genética , Hepatófitas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA , Processamento Pós-Transcricional do RNA
17.
BMC Plant Biol ; 22(1): 9, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979922

RESUMO

BACKGROUND: Despite the frequent use of protoplast-to-plant system in in vitro cultures of plants, the molecular mechanisms regulating the first and most limiting stages of this process, i.e., protoplast dedifferentiation and the first divisions leading to the formation of a microcallus, have not been elucidated. RESULTS: In this study, we investigated the function of miRNAs in the dedifferentiation of A. thaliana mesophyll cells in a process stimulated by the enzymatic removal of the cell wall. Leaf cells, protoplasts and CDPs (cells derived from protoplasts) cultured for 24, 72 and 120 h (first cell division). In protoplasts, a strong decrease in the amount of AGO1 in both the nucleus and the cytoplasm, as well as dicing bodies (DBs), which are considered to be sites of miRNA biogenesis, was shown. However during CDPs division, the amounts of AGO1 and DBs strongly increased. MicroRNA transcriptome studies demonstrated that lower amount of differentially expressed miRNAs are present in protoplasts than in CDPs cultured for 120 h. Then analysis of differentially expressed miRNAs, selected pri-miRNA and mRNA targets were performed. CONCLUSION: This result indicates that miRNA function is not a major regulation of gene expression in the initial but in later steps of dedifferentiation during CDPs divisions. miRNAs participate in organogenesis, oxidative stress, nutrient deficiencies and cell cycle regulation in protoplasts and CDPs. The important role played by miRNAs in the process of dedifferentiation of mesophyll cells was confirmed by the increased mortality and reduced cell division of CDPs derived from mutants with defective miRNA biogenesis and miR319b expression.


Assuntos
Arabidopsis/fisiologia , Desdiferenciação Celular/genética , Parede Celular/fisiologia , MicroRNAs/genética , Células Vegetais/fisiologia , RNA de Plantas/genética , Arabidopsis/genética , MicroRNAs/metabolismo , RNA de Plantas/metabolismo
18.
Front Plant Sci ; 12: 765003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925413

RESUMO

SmD3 is a core component of the small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. The role of Arabidopsis SmD3 in plant immunity was assessed by testing sensitivity of smd3a and smd3b mutants to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and its pathogenesis effectors flagellin (flg22), EF-Tu (elf18) and coronatine (COR). Both smd3 mutants exhibited enhanced susceptibility to Pst accompanied by marked changes in the expression of key pathogenesis markers. mRNA levels of major biotic stress response factors were also altered upon treatment with Pseudomonas effectors. Our genome-wide transcriptome analysis of the smd3b-1 mutant infected with Pst, verified by northern and RT-qPCR, showed that lack of SmD3-b protein deregulates defense against Pst infection at the transcriptional and posttranscriptional levels including defects in splicing and an altered pattern of alternative splicing. Importantly, we show that SmD3-b dysfunction impairs mainly stomatal immunity as a result of defects in stomatal development. We propose that it is the malfunction of the stomata that is the primary cause of an altered mutant response to the pathogen. Other changes in the smd3b-1 mutant involved enhanced elf18- and flg22-induced callose deposition, reduction of flg22-triggered production of early ROS and boost of secondary ROS caused by Pst infection. Together, our data indicate that SmD3 contributes to the plant immune response possibly via regulation of mRNA splicing of key pathogenesis factors.

19.
Methods Mol Biol ; 2170: 53-77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32797451

RESUMO

MicroRNAs control plant development and are key regulators of plant responses to biotic and abiotic stresses. Thus, their expression must be carefully controlled since both excess and deficiency of a given microRNA may be deleterious to plant cell. MicroRNA expression regulation can occur at several stages of their biogenesis pathway. One of the most important of these regulatory checkpoints is transcription efficiency. mirEX database is a tool for exploration and visualization of plant pri-miRNA expression profiles. It includes results obtained using high-throughput RT-qPCR platform designed to monitor pri-miRNA expression in different miRNA biogenesis mutants and developmental stages of Arabidopsis, barley, and Pellia plants. A step-by-step instruction for browsing the database and detailed protocol for high-throughput RT-qPCR experiments, including list of primers designed for the amplification of pri-miRNAs, are presented.


Assuntos
Arabidopsis/metabolismo , Hordeum/metabolismo , MicroRNAs/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hordeum/genética , MicroRNAs/química
20.
Plant Sci ; 299: 110608, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32900446

RESUMO

Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/metabolismo , MicroRNAs/metabolismo , Nitrogênio/metabolismo , RNA de Plantas/metabolismo , Regulação para Cima , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solo/química , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA