Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 69(6): 1920-1930, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34818187

RESUMO

Biomechanical and clinical gait research observes muscles and tendons in limbs to study their functions and behaviour. Therefore, movements of distinct anatomical landmarks, such as muscle-tendon junctions, are frequently measured. We propose a reliable and time efficient machine-learning approach to track these junctions in ultrasound videos and support clinical biomechanists in gait analysis. In order to facilitate this process, a method based on deep-learning was introduced. We gathered an extensive dataset, covering 3 functional movements, 2 muscles, collected on 123 healthy and 38 impaired subjects with 3 different ultrasound systems, and providing a total of 66864 annotated ultrasound images in our network training. Furthermore, we used data collected across independent laboratories and curated by researchers with varying levels of experience. For the evaluation of our method a diverse test-set was selected that is independently verified by four specialists. We show that our model achieves similar performance scores to the four human specialists in identifying the muscle-tendon junction position. Our method provides time-efficient tracking of muscle-tendon junctions, with prediction times of up to 0.078 seconds per frame (approx. 100 times faster than manual labeling). All our codes, trained models and test-set were made publicly available and our model is provided as a free-to-use online service on https://deepmtj.org/.


Assuntos
Aprendizado de Máquina , Tendões , Humanos , Movimento , Músculos , Tendões/diagnóstico por imagem , Ultrassonografia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4770-4774, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019057

RESUMO

Recording muscle tendon junction displacements during movement, allows separate investigation of the muscle and tendon behaviour, respectively. In order to provide a fully-automatic tracking method, we employ a novel deep learning approach to detect the position of the muscle tendon junction in ultrasound images. We utilize the attention mechanism to enable the network to focus on relevant regions and to obtain a better interpretation of the results. Our data set consists of a large cohort of 79 healthy subjects and 28 subjects with movement limitations performing passive full range of motion and maximum contraction movements. Our trained network shows robust detection of the muscle tendon junction on a diverse data set of varying quality with a mean absolute error of 2.55 ± 1 mm. We show that our approach can be applied for various subjects and can be operated in real-time. The complete software package is available for open-source use.


Assuntos
Aprendizado Profundo , Tendões , Humanos , Movimento , Amplitude de Movimento Articular , Tendões/diagnóstico por imagem , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA