Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2217602120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893270

RESUMO

Eukaryotes have cytosolic surveillance systems to detect invading microorganisms and initiate protective immune responses. In turn, host-adapted pathogens have evolved strategies to modulate these surveillance systems, which can promote dissemination and persistence in the host. The obligate intracellular pathogen Coxiella burnetii infects mammalian hosts without activating many innate immune sensors. The Defect in Organelle Trafficking/Intracellular Multiplication (Dot/Icm) protein secretion system is necessary for C. burnetii to establish a vacuolar niche inside of host cells, which sequesters these bacteria in a specialized organelle that could evade host surveillance systems. However, bacterial secretion systems often introduce agonists of immune sensors into the host cytosol during infection. For instance, nucleic acids are introduced to the host cytosol by the Dot/Icm system of Legionella pneumophila, which results in type I interferon production. Despite host infection requiring a homologous Dot/Icm system, C. burnetii does not induce type I interferon production during infection. Here, it was found that type I interferons are detrimental to C. burnetii infection and that C. burnetii blocks type I interferon production mediated by retionic acid inducible gene I (RIG-I) signaling. Two Dot/Icm effector proteins, EmcA and EmcB, are required for C. burnetii inhibition of RIG-I signaling. EmcB is sufficient to block RIG-I signaling and is a ubiquitin-specific cysteine protease capable of deconjugating ubiquitin chains from RIG-I that are necessary for signaling. EmcB preferentially cleaves K63-linked ubiquitin chains of three or more monomers, which represent ubiquitin chains that potently activate RIG-I signaling. Identification of a deubiquitinase encoded by C. burnetii provides insights into how a host-adapted pathogen antagonizes immune surveillance.


Assuntos
Coxiella burnetii , Animais , Coxiella burnetii/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Enzimas Desubiquitinantes/metabolismo , Ubiquitinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Mamíferos/metabolismo
2.
Front Pharmacol ; 13: 872335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677430

RESUMO

Excitatory amino acid transporters (EAAT/SLC1) mediate Na+-dependent uptake of extracellular glutamate and are potential drug targets for neurological disorders. Conventional methods to assess glutamate transport in vitro are based on radiolabels, fluorescent dyes or electrophysiology, which potentially compromise the cell's physiology and are generally less suited for primary drug screens. Here, we describe a novel label-free method to assess human EAAT function in living cells, i.e., without the use of chemical modifications to the substrate or cellular environment. In adherent HEK293 cells overexpressing EAAT1, stimulation with glutamate or aspartate induced cell spreading, which was detected in real-time using an impedance-based biosensor. This change in cell morphology was prevented in the presence of the Na+/K+-ATPase inhibitor ouabain and EAAT inhibitors, which suggests the substrate-induced response was ion-dependent and transporter-specific. A mechanistic explanation for the phenotypic response was substantiated by actin cytoskeleton remodeling and changes in the intracellular levels of the osmolyte taurine, which suggests that the response involves cell swelling. In addition, substrate-induced cellular responses were observed for cells expressing other EAAT subtypes, as well as in a breast cancer cell line (MDA-MB-468) with endogenous EAAT1 expression. These findings allowed the development of a label-free high-throughput screening assay, which could be beneficial in early drug discovery for EAATs and holds potential for the study of other transport proteins that modulate cell shape.

3.
Nature ; 592(7852): 128-132, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536623

RESUMO

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of their expression of specific transcription factors and cytokines1. In the skin, disease-specific production of ILC3-associated cytokines interleukin (IL)-17 and IL-22 in response to IL-23 signalling contributes to dermal inflammation in psoriasis. However, it is not known whether this response is initiated by pre-committed ILCs or by cell-state transitions. Here we show that the induction of psoriasis in mice by IL-23 or imiquimod reconfigures a spectrum of skin ILCs, which converge on a pathogenic ILC3-like state. Tissue-resident ILCs were necessary and sufficient, in the absence of circulatory ILCs, to drive pathology. Single-cell RNA-sequencing (scRNA-seq) profiles of skin ILCs along a time course of psoriatic inflammation formed a dense transcriptional continuum-even at steady state-reflecting fluid ILC states, including a naive or quiescent-like state and an ILC2 effector state. Upon disease induction, the continuum shifted rapidly to span a mixed, ILC3-like subset also expressing cytokines characteristic of ILC2s, which we inferred as arising through multiple trajectories. We confirmed the transition potential of quiescent-like and ILC2 states using in vitro experiments, single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and in vivo fate mapping. Our results highlight the range and flexibility of skin ILC responses, suggesting that immune activities primed in healthy tissues dynamically adapt to provocations and, left unchecked, drive pathological remodelling.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Linfócitos/patologia , Psoríase/imunologia , Psoríase/patologia , Pele/imunologia , Pele/patologia , Animais , Diferenciação Celular , Linhagem da Célula , Cromatina/genética , Modelos Animais de Doenças , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-23/imunologia , Análise de Classes Latentes , Linfócitos/classificação , Masculino , Camundongos , Psoríase/genética , RNA Citoplasmático Pequeno/genética , Reprodutibilidade dos Testes , Fatores de Tempo
5.
Cell ; 180(1): 50-63.e12, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31923399

RESUMO

Mucosal barrier immunity is essential for the maintenance of the commensal microflora and combating invasive bacterial infection. Although immune and epithelial cells are thought to be the canonical orchestrators of this complex equilibrium, here, we show that the enteric nervous system (ENS) plays an essential and non-redundant role in governing the antimicrobial protein (AMP) response. Using confocal microscopy and single-molecule fluorescence in situ mRNA hybridization (smFISH) studies, we observed that intestinal neurons produce the pleiotropic cytokine IL-18. Strikingly, deletion of IL-18 from the enteric neurons alone, but not immune or epithelial cells, rendered mice susceptible to invasive Salmonella typhimurium (S.t.) infection. Mechanistically, unbiased RNA sequencing and single-cell sequencing revealed that enteric neuronal IL-18 is specifically required for homeostatic goblet cell AMP production. Together, we show that neuron-derived IL-18 signaling controls tissue-wide intestinal immunity and has profound consequences on the mucosal barrier and invasive bacterial killing.


Assuntos
Imunidade nas Mucosas/imunologia , Interleucina-18/imunologia , Mucosa Intestinal/imunologia , Animais , Citocinas/imunologia , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo , Células Epiteliais/imunologia , Feminino , Células Caliciformes/imunologia , Interleucina-18/biossíntese , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Ratos , Ratos Sprague-Dawley , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia
6.
Nature ; 564(7736): 434-438, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542152

RESUMO

The annotation of the mammalian protein-coding genome is incomplete. Arbitrary size restriction of open reading frames (ORFs) and the absolute requirement for a methionine codon as the sole initiator of translation have constrained the identification of potentially important transcripts with non-canonical protein-coding potential1,2. Here, using unbiased transcriptomic approaches in macrophages that respond to bacterial infection, we show that ribosomes associate with a large number of RNAs that were previously annotated as 'non-protein coding'. Although the idea that such non-canonical ORFs can encode functional proteins is controversial3,4, we identify a range of short and non-ATG-initiated ORFs that can generate stable and spatially distinct proteins. Notably, we show that the translation of a new ORF 'hidden' within the long non-coding RNA Aw112010 is essential for the orchestration of mucosal immunity during both bacterial infection and colitis. This work expands our interpretation of the protein-coding genome and demonstrates that proteinaceous products generated from non-canonical ORFs are crucial for the immune response in vivo. We therefore propose that the misannotation of non-canonical ORF-containing genes as non-coding RNAs may obscure the essential role of a multitude of previously undiscovered protein-coding genes in immunity and disease.


Assuntos
Imunidade nas Mucosas/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA Longo não Codificante/genética , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Colite/genética , Colite/imunologia , Colite/metabolismo , Imunidade nas Mucosas/efeitos dos fármacos , Interleucina-12/biossíntese , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , RNA Longo não Codificante/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Salmonella typhimurium/imunologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
7.
J Exp Med ; 213(12): 2539-2552, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27799623

RESUMO

Interferon (IFN) lambdas are critical antiviral effectors in hepatic and mucosal infections. Although IFNλ1, IFNλ2, and IFNλ3 act antiviral, genetic association studies have shown that expression of the recently discovered IFNL4 is detrimental to hepatitis C virus (HCV) infection through a yet unknown mechanism. Intriguingly, human IFNL4 harbors a genetic variant that introduces a premature stop codon. We performed a molecular and biochemical characterization of IFNλ4 to determine its role and regulation of expression. We found that IFNλ4 exhibits similar antiviral activity to IFNλ3 without negatively affecting antiviral IFN activity or cell survival. We show that humans deploy several mechanisms to limit expression of functional IFNλ4 through noncoding splice variants and nonfunctional protein isoforms. Furthermore, protein-coding IFNL4 mRNA are not loaded onto polyribosomes and lack a strong polyadenylation signal, resulting in poor translation efficiency. This study provides mechanistic evidence that humans suppress IFNλ4 expression, suggesting that immune function is dependent on other IFNL family members.


Assuntos
Interações Hospedeiro-Patógeno , Interleucinas/metabolismo , Viroses/metabolismo , Processamento Alternativo/genética , Animais , Antivirais/farmacologia , Sequência de Bases , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Espaço Extracelular/metabolismo , Mutação da Fase de Leitura/genética , Hepacivirus/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferons , Interleucinas/farmacologia , Espaço Intracelular/metabolismo , Modelos Biológicos , Moléculas com Motivos Associados a Patógenos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Interferon , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
Nat Med ; 22(12): 1475-1481, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27841874

RESUMO

Hepatitis C virus (HCV) infects 200 million people globally, and 60-80% of cases persist as a chronic infection that will progress to cirrhosis and liver cancer in 2-10% of patients. We recently demonstrated that HCV induces aberrant expression of two host microRNAs (miRNAs), miR-208b and miR-499a-5p, encoded by myosin genes in infected hepatocytes. These miRNAs, along with AU-rich-element-mediated decay, suppress IFNL2 and IFNL3, members of the type III interferon (IFN) gene family, to support viral persistence. In this study, we show that miR-208b and miR-499a-5p also dampen type I IFN signaling in HCV-infected hepatocytes by directly down-regulating expression of the type I IFN receptor chain, IFNAR1. Inhibition of these miRNAs by using miRNA inhibitors during HCV infection increased expression of IFNAR1. Additionally, inhibition rescued the antiviral response to exogenous type I IFN, as measured by a marked increase in IFN-stimulated genes and a decrease in HCV load. Treatment of HCV-infected hepatocytes with type I IFN increased expression of myosins over HCV infection alone. Since these miRNAs can suppress type III IFN family members, these data collectively define a novel cross-regulation between type I and III IFNs during HCV infection.


Assuntos
Regulação da Expressão Gênica/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Hepatócitos/imunologia , Interferon Tipo I/imunologia , MicroRNAs/imunologia , Sistemas CRISPR-Cas , Regulação para Baixo , Técnicas de Inativação de Genes , Células Hep G2 , Hepatite C/imunologia , Humanos , Interferons , Interleucinas/imunologia , Miosinas/metabolismo , Receptor de Interferon alfa e beta/genética
9.
Curr Opin Virol ; 12: 75-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25890065

RESUMO

Post-transcriptional regulation of gene expression plays a pivotal role in various gene regulatory networks including, but not limited to metabolism, embryogenesis and immune responses. Different mechanisms of post-transcriptional regulation, which can act individually, synergistically, or even in an antagonistic manner have been described. Hepatitis C virus (HCV) is notorious for subverting host immune responses and indeed exploits several components of the host's post-transcriptional regulatory machinery for its own benefit. At the same time, HCV replication is post-transcriptionally targeted by host cell components to blunt viral propagation. This review discusses the interplay of post-transcriptional mechanisms that affect host immune responses in the setting of HCV infection and highlights the sophisticated mechanisms both host and virus have evolved in the race for superiority.


Assuntos
Regulação da Expressão Gênica , Hepacivirus/genética , Hepatite C/genética , Processamento Pós-Transcricional do RNA , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Genéticos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Nat Immunol ; 15(1): 72-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24241692

RESUMO

IFNL3, which encodes interferon-λ3 (IFN-λ3), has received considerable attention in the hepatitis C virus (HCV) field, as many independent genome-wide association studies have identified a strong association between polymorphisms near IFNL3 and clearance of HCV. However, the mechanism underlying this association has remained elusive. In this study, we report the identification of a functional polymorphism (rs4803217) in the 3' untranslated region (UTR) of IFNL3 mRNA that dictated transcript stability. We found that this polymorphism influenced AU-rich element (ARE)-mediated decay (AMD) of IFNL3 mRNA, as well as the binding of HCV-induced microRNAs during infection. Together these pathways mediated robust repression of the unfavorable IFNL3 polymorphism. Our data reveal a previously unknown mechanism by which HCV attenuates the antiviral response and indicate new potential therapeutic targets for HCV treatment.


Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Interleucinas/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Estabilidade de RNA/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Citometria de Fluxo , Genótipo , Células Hep G2 , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Interferons , Interleucinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
11.
Eur J Immunol ; 43(7): 1896-906, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616277

RESUMO

Synthetic oligonucleotides (ODN) expressing CpG motifs mimic the ability of bacterial DNA to trigger the innate immune system via TLR9. Plasmacytoid dendritic cells (pDCs) make a critical contribution to the ensuing immune response. This work examines the induction of antiviral (IFN-ß) and pro-inflammatory (IL-6) cytokines by CpG-stimulated human pDCs and the human CAL-1 pDC cell line. Results show that interferon regulatory factor-5 (IRF-5) and NF-κB p50 are key co-regulators of IFN-ß and IL-6 expression following TLR9-mediated activation of human pDCs. The nuclear accumulation of IRF-1 was also observed, but this was a late event that was dependant on type 1 IFN and unrelated to the initiation of gene expression. IRF-8 was identified as a novel negative regulator of gene activation in CpG-stimulated pDCs. As variants of IRF-5 and IRF-8 were recently found to correlate with susceptibility to certain autoimmune diseases, these findings are relevant to our understanding of the pharmacologic effects of "K" ODN and the role of TLR9 ligation under physiologic, pathologic, and therapeutic conditions.


Assuntos
Células Dendríticas/imunologia , Fatores Reguladores de Interferon/imunologia , Interferon beta/biossíntese , Interleucina-6/biossíntese , Subunidade p50 de NF-kappa B/imunologia , Linhagem Celular , Células Dendríticas/metabolismo , Imunofluorescência , Regulação da Expressão Gênica/imunologia , Humanos , Immunoblotting , Imunoprecipitação , Fatores Reguladores de Interferon/metabolismo , Interferon beta/imunologia , Interleucina-6/imunologia , Subunidade p50 de NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Toll-Like 9/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA