Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202403119, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604974

RESUMO

Nickel-catalyzed cross-electrophile coupling reactions of two aliphatic alcohol derivatives remain a challenge. Herein, we report a nickel-catalyzed reductive methylation reaction of aliphatic mesylates with methyl tosylate. This reaction provides straightforward access to compounds bearing aliphatic methyl groups from alkyl alcohol derivatives. Isotopically labelled substrates and reagents can be employed in the reaction to provide perdeuterated and 13C-labelled products. This transformation can be achieved by employing stoichiometric Mn reductant or electrochemically. Additionally, mechanistic experiments show that alkyl iodides are key intermediates in the transformation which undergo a stereoablative reaction via radical intermediates.

2.
Acc Chem Res ; 56(22): 3313-3324, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37936256

RESUMO

ConspectusNickel-catalyzed reactions of alkyl alcohol derivatives leverage the high prevalence of hydroxyl groups in natural products, medicinal agents, and synthetic intermediates to provide access to C(sp3)-rich frameworks. This Account describes our laboratory's development of stereospecific and stereoconvergent C-C bond forming reactions employing C(sp3)-O and C(sp3)-N electrophiles. In the context of development of new transformations, we also define fundamental characteristics of the nickel catalysts.Part I details the nickel-catalyzed cross-coupling reactions developed by our group which hinges on stereospecific formation of stable π-benzyl intermediates. Acyclic and cyclic ethers, esters, carbamates, lactones, and sulfonamides undergo Kumada-, Suzuki-, and Negishi-type coupling reactions to produce enantioenriched products with high fidelity of stereochemical information. We describe extension to include ring-opening reactions of saturated heterocycles to afford acyclic 1,3-fragments in high diastereomeric ratios. We also describe our advances in stereospecific nickel-catalyzed cross-electrophile coupling reactions. Tethered C-O and C-X electrophiles proved fruitful for construction of a variety of carbocyclic frameworks. We report an intramolecular cross-electrophile coupling of benzylic pivalates with aryl bromides for the synthesis of indanes and tetralins. We found that 4-halotetrahydropyrans and 4-halopiperidines readily undergo stereospecific ring contraction to afford substituted cyclopropanes. Mechanistic investigations are consistent with closed-shell intermediates, a Ni(0)/Ni(II) cycle, and an intramolecular SN2-type reaction of a key organonickel intermediate to form the cyclopropane. Building toward more complex cascade reactions, we have demonstrated that 2-alkynyl piperidines incorporate MeMgI in a dicarbofunctionalization of the alkyne to afford highly substituted vinyl cyclopropanes.In Part II we present our development of stereoconvergent reactions of alkyl alcohol derivatives. In order to expand the utility of the intramolecular XEC reaction, we sought to employ unactivated alkyl electrophiles. Specifically, alkyl dimesylates engage in intramolecular XEC reactions to form alkyl cyclopropanes. In contrast to our previous work, these reactions proceed through open-shell intermediates and favor stereoconvergent formation of the trans-cyclopropane. Enantioselective aldol reactions can be employed in syntheses of 1,3-diols which furnish enantioenriched cyclopropanes in high ee. Experimental and computational evidence reveals that MeMgI mediates formation of alkyl iodides in situ. The coupling reaction initiates with halogen atom abstraction at the secondary alkyl iodide. The alkyl Ni(II) complex then proceeds through a stereospecific SN2-type ring closure to form cyclopropane. In an effort to increase functional group compatibility in the synthesis of cyclopropanes from alkyl dimesylates we developed a zinc-mediated reaction of 1,3-dimesylates prepared from medicinal analogues. In challenging nickel-catalyzed intramolecular cross-electrophile coupling we were also able to show that vicinal carbocycles can be prepared under similar conditions, affording vicinal cyclopentyl-cyclopropyl motifs in high yield.In Part III we discuss our recent findings on the role of ligand identity in catalyst selectivity for stereospecific vs stereoablative mechanisms for oxidative addition. We demonstrate multivariable control of mechanism, where the choice of substrate and ligand work together to promote open- or closed-shell intermediates. In divergent reactions of 4-halotetrahydropyrans we observe distinct ligand preference for reactions at the C(sp3)-O center or the C(sp3)-Cl center. These findings are the source of continued investigations in our laboratory.

3.
ACS Catal ; 13(8): 5472-5481, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123596

RESUMO

Understanding mechanistic details of the nickel-catalyzed coupling reactions of Csp3 alcohol derivatives is key to developing selective reactions of this widely prevalent functional group. In this manuscript, we utilize a combination of experimental data and DFT studies to define the key intermediates, stereochemical outcome, and competing pathways of a nickel-catalyzed cross-electrophile coupling reaction of 1,3-dimesylates. Stereospecific formation of a 1,3-diiodide intermediate is achieved in situ by the Grignard reagent. The overall stereoablative stereochemical outcome is due to a nickel-catalyzed halogen atom abstraction with a radical rebound that is slower than epimerization of the alkyl radical. Finally, lifetimes of this alkyl radical intermediate are compared to radical clocks to enhance the understanding of the lifetime of the secondary alkyl radical.

4.
ACS Catal ; 13(7): 4488-4499, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066042

RESUMO

Cross-electrophile coupling reactions involving direct C-O bond activation of unactivated alkyl sulfonates or C-F bond activation of allylic gem-difluorides remain challenging. Herein, we report a nickel-catalyzed cross-electrophile coupling reaction between alkyl mesylates and allylic gem-difluorides to synthesize enantioenriched vinyl fluoride-substituted cyclopropane products. These complex products are interesting building blocks with applications in medicinal chemistry. Density functional theory (DFT) calculations demonstrate that there are two competing pathways for this reaction, both of which initiate by coordination of the electron-deficient olefin to the low-valent nickel catalyst. Subsequently, the reaction can proceed by oxidative addition of the C-F bond of the allylic gem-difluoride moiety or by directed polar oxidative addition of the alkyl mesylate C-O bond.

5.
J Org Chem ; 87(18): 12352-12369, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36049783

RESUMO

Grignard reagents are commonly used as carbanion equivalents. Herein, we report an example of Grignard reagents acting as halide nucleophiles to form alkyl iodides and bromides. We establish that Grignard reagents can convert alkyl mesylates into alkyl halides, as well as be employed in a one-pot halogenation reaction starting from alcohols, which proceed through mesylate intermediates. The halogenation reaction is confirmed to occur by an SN2 pathway with inversion of configuration and is demonstrated to be efficient on multi-gram scale.

6.
Org Lett ; 24(32): 6093-6098, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35926218

RESUMO

A nickel-catalyzed intramolecular conjunctive cross-electrophile coupling reaction has been established. This method enables the synthesis of 3,5-vicinal carbocyclic rings found in numerous biologically active compounds and natural products. We provide mechanistic experiments that indicate this reaction proceeds through alkyl iodides formed in situ, initiates at the secondary electrophilic center, and proceeds through radical intermediates.


Assuntos
Iodetos , Níquel , Catálise , Estereoisomerismo
7.
Org Lett ; 24(30): 5619-5623, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35867876

RESUMO

A method for incorporating cyclopropane motifs into complex molecules has been developed. Herein we report a zinc dust-mediated cross-electrophile coupling reaction of 1,3-dimesylates to synthesize cyclopropanes. 1,3-Dimesylates can be readily accessed from 1,3-diols, a functionality prevalent in many natural products and medicinal agents. The reaction conditions are mild, such that functional groups, including amides, esters, heterocycles, and alkenes, are tolerated. Notably, we have demonstrated late-stage cyclopropanation of statin medicinal agents.


Assuntos
Produtos Biológicos , Zinco , Álcoois , Alcenos , Ciclopropanos
8.
Org Lett ; 24(28): 5003-5008, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35559652

RESUMO

Development of nickel-catalyzed transformations would be facilitated by an improved ability to predict which ligands promote and suppress competing mechanisms. We evaluate ligand-based modulation of catalyst preference for one- or two-electron pathways employing 4-halotetrahydropyrans as model substrates that can undergo divergent reaction pathways. Chemoselectivity for one- or two-electron oxidative addition is predicted by ligand class. Phosphine-ligated nickel catalysts favor closed-shell oxidative addition. In contrast, nitrogen-ligated nickel catalysts prefer the one-electron pathway, initiating with halogen atom transfer.

9.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641491

RESUMO

Herein, we report a Kumada cross-coupling reaction of benzylic sulfonamides. The scope of the transformation includes acyclic and cyclic sulfonamide precursors that cleanly produce highly substituted acyclic fragments. Preliminary data are consistent with a stereospecific mechanism that allows for a diastereoselective reaction.

10.
Synlett ; 32(12): 1151-1156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354327

RESUMO

Herein, we discuss our laboratory's research in the activation of alcohol derivatives in cross-coupling and cross-electrophile coupling reactions. Our developed methods enable the use of secondary alcohols to afford tertiary stereogenic centers, which we applied to the synthesis of pharmaceutically relevant compounds and substructures. We first discuss the synthesis of bioactive compounds via stereospecific Kumada cross-coupling reactions, followed by a discussion on the development of our stereoselective cross-electrophile coupling reaction to synthesize cyclopropanes.

11.
J Am Chem Soc ; 142(11): 5017-5023, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32129601

RESUMO

Cross-electrophile coupling reactions of two Csp3-X bonds remain challenging. Herein we report an intramolecular nickel-catalyzed cross-electrophile coupling reaction of 1,3-diol derivatives. Notably, this transformation is utilized to synthesize a range of mono- and 1,2-disubstituted alkylcyclopropanes, including those derived from terpenes, steroids, and aldol products. Additionally, enantioenriched cyclopropanes are synthesized from the products of proline-catalyzed and Evans aldol reactions. A procedure for direct transformation of 1,3-diols to cyclopropanes is also described. Calculations and experimental data are consistent with a nickel-catalyzed mechanism that begins with stereoablative oxidative addition at the secondary center.


Assuntos
Ciclopropanos/síntese química , Mesilatos/química , Catálise , Complexos de Coordenação/química , Ciclização , Níquel/química , Oxirredução , Estereoisomerismo
12.
Chemistry ; 26(14): 3044-3048, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31953874

RESUMO

A series of nickel complexes in varying oxidation states were evaluated as precatalysts for the stereospecific cross-coupling of benzylic ethers. These results demonstrate rapid redox reactions of precatalysts, such that the oxidative state of the precatalyst does not dictate the oxidation state of the active catalyst in solution. These data provide the first experimental evidence for a Ni0 -NiII catalytic cycle for a stereospecific alkyl-alkyl cross-coupling reaction, including spectroscopic analysis of the catalyst resting state.

13.
Isr J Chem ; 60: 402-405, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33442068

RESUMO

A focused small library of carbamates and alcohols was prepared employing stereospecific Kumada-ring opening reactions of tetrahydropyrans. The core framework of the library members is acyclic and incorporates 1,3-substituents, to provide a conformational bias in avoiding syn-pentane interactions. A new compound with micromolar activity against MOLT-4, CCRF-CEM, and HL-60(TB) leukemia cell lines was identified from this series.

14.
J Org Chem ; 85(4): 1775-1793, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31840511

RESUMO

The application of amine derivatives as coupling partners is rare due to the inherent strength of the C-N bond. Herein, we report the first cross-electrophile coupling reaction of unstrained benzylic sulfonamides. Nickel-catalyzed intramolecular cross-electrophile coupling reactions of acyclic and cyclic benzylic sulfonamides with pendant alkyl chlorides generate cyclopropane products. Mechanistic experiments and DFT calculations are consistent with initiation of the reaction by magnesium iodide accelerated oxidative addition of the benzylic sulfonamide. This work establishes neutral and unstrained amine derivatives as XEC partners, furnishes structural rearrangement of benzylic sulfonamides, and provides valuable information regarding catalyst design for the development of new cross-electrophile coupling reactions of carbon-heteroatom bonds.

15.
J Am Chem Soc ; 141(14): 5835-5855, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30866626

RESUMO

Ni-catalyzed C(sp3)-O bond activation provides a useful approach to synthesize enantioenriched products from readily available enantioenriched benzylic alcohol derivatives. The control of stereospecificity is key to the success of these transformations. To elucidate the reversed stereospecificity and chemoselectivity of Ni-catalyzed Kumada and cross-electrophile coupling reactions with benzylic ethers, a combined computational and experimental study is performed to reach a unified mechanistic understanding. Kumada coupling proceeds via a classic cross-coupling mechanism. Initial rate-determining oxidative addition occurs with stereoinversion of the benzylic stereogenic center. Subsequent transmetalation with the Grignard reagent and syn-reductive elimination produce the Kumada coupling product with overall stereoinversion at the benzylic position. The cross-electrophile coupling reaction initiates with the same benzylic C-O bond cleavage and transmetalation to form a common benzylnickel intermediate. However, the presence of the tethered alkyl chloride allows a facile intramolecular SN2 attack by the benzylnickel moiety. This step circumvents the competing Kumada coupling, leading to the excellent chemoselectivity of cross-electrophile coupling. These mechanisms account for the observed stereospecificity of the Kumada and cross-electrophile couplings, providing a rationale for double inversion of the benzylic stereogenic center in cross-electrophile coupling. The improved mechanistic understanding will enable design of stereoselective transformations involving Ni-catalyzed C(sp3)-O bond activation.


Assuntos
Benzeno/química , Teoria da Densidade Funcional , Éteres/química , Níquel/química , Catálise , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
16.
J Org Chem ; 84(3): 1664-1672, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608173

RESUMO

We herein report two examples of one-pot, simultaneous reactions, mediated by multiple, orthogonal catalysts with the same catalytic motif. First, BINOL-derived chiral phosphoric acids (CPA) and phosphothreonine (pThr)-embedded peptides were found to be matched for two different steps in double reductions of bisquinolines. Next, two π-methylhistidine (Pmh)-containing peptides catalyzed enantio- and chemoselective acylations and phosphorylations of multiple substrates in one pot. The selectivity exhibited by common reactive moieties is adjusted solely by the appended chiral scaffold through outer-sphere interactions.


Assuntos
Peptídeos/química , Ácidos Fosfóricos/química , Fosfotreonina/química , Catálise , Estrutura Molecular , Naftóis
17.
Acc Chem Res ; 51(2): 567-572, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29364644

RESUMO

Mechanistic investigation and new reaction development are intertwined. This interdependence presents challenges and opportunities in development of all transformations, particularly for those that employ base metal catalysts. In comparison to precious metal counterparts, these catalysts yield less easily to mechanistic analysis. However, base metal catalysts can provide new modes of reactivity and opportunities for discovery. In this Commentary, we highlight a developing field: nickel-catalyzed stereoselective alkyl cross-coupling reactions. While key features of the relevant catalytic cycles remain ambiguous, chemical intuition and key mechanistic experiments have provided the stepping stones for discovery of stereoselective transformations.


Assuntos
Derivados de Benzeno/síntese química , Técnicas de Química Sintética/métodos , Catálise , Níquel/química , Oxirredução , Estereoisomerismo
18.
Org Lett ; 19(23): 6304-6307, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29135261

RESUMO

2-Hydroxymethylpyridines undergo nickel-catalyzed hydrogenolysis upon activation with a chlorophosphate. Reactions employ diethylzinc and are proposed to proceed through secondary benzylzinc reagents. Quenching with deuteromethanol provides straightforward incorporation of a deuterium label in the benzylic position. Intramolecular conjugate additions with α,ß-unsaturated esters are also demonstrated and support the intermediacy of a benzylzinc complex.


Assuntos
Níquel/química , Compostos Organometálicos/química , Piridinas/química , Zinco/química , Catálise , Deutério , Oxirredução , Estereoisomerismo
19.
J Am Chem Soc ; 139(37): 12994-13005, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28838241

RESUMO

Nickel catalysts have shown unique ligand control of stereoselectivity in the Suzuki-Miyaura cross-coupling of boronates with benzylic pivalates and derivatives involving C(sp3)-O cleavage. The SIMes ligand (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) produces the stereochemically inverted C-C coupling product, while the tricyclohexylphosphine (PCy3) ligand delivers the retained stereochemistry. We have explored the mechanism and origins of the ligand-controlled stereoselectivity with density functional theory (DFT) calculations. The oxidative addition determines the stereoselectivity with two competing transition states, an SN2 back-side attack type transition state that inverts the benzylic stereogenic center and a concerted oxidative addition through a cyclic transition state, which provides stereoretention. The key difference between the two transition states is the substrate-nickel-ligand angle distortion; the ligand controls the selectivity by differentiating the ease of this angle distortion. For the PCy3 ligand, the nickel-ligand interaction involves mainly σ-donation, which does not require a significant energy penalty for the angle distortion. The facile angle distortion with PCy3 ligand allows the favorable cyclic oxidative addition transition state, leading to the stereoretention. For the SIMes ligand, the extra d-p back-donation from nickel to the coordinating carbene increases the rigidity of the nickel-ligand bond, and the corresponding angle distortion is more difficult. This makes the concerted cyclic oxidative addition unfavorable with SIMes ligand, and the back-side SN2-type oxidative addition delivers the stereoinversion.


Assuntos
Compostos de Benzil/química , Ésteres/química , Níquel/química , Teoria Quântica , Catálise , Ligantes , Estrutura Molecular , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA