Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Diabetes Metab Disord ; 22(2): 1105-1115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975134

RESUMO

Epigenetic modifications play a role in Diabetic Nephropathy (DN). Downregulation of miR-29b leads to modulation of DNA methylation via DNA methyl transferases (DNMTs) and hence exaggerated renal fibrosis in DN. Therefore, the main aim of the study was to evaluate effect of miR-29b expression in vivo on DNMTs, renal fibrosis, glomerular and tubular damage as well as renal morphology in DN. In order to explore the role of miR-29b in DNA methylation of other miRNAs, methylation profiling study was performed. It revealed that miR-29b was involved in methylation on of miR-130b on the cytosine guanine dinucleotides rich DNA (CpG) island 1 located on promoter region. In conclusion, miR-29b expression was found to modulate DNA methylation via DNMTs and regulate methylation of miR-130b. The result of this study provides a future direction to unveil role of miRNA expression in DNA methylation and its consequent effect on other miRNAs in DN. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-023-01208-2.

2.
J Diabetes Metab Disord ; 19(1): 13-27, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32550152

RESUMO

PURPOSE: As epigenetic modifications like chromatin histone modifications have been suggested to play a role in the pathophysiology of Diabetic Nephropathy (DN) and are also found to be regulated by microRNAs. Our main purpose was to explore the role of microRNA in histone modulations associated with DN. There is downregulation of miR-29b due to advanced glycation end products in diabetes. Histone Deacetylase-4 (HDAC4) is amongst the histone modulators which promotes podocytes' impairment and upregulates transforming growth factor-1 (TGF-ß1) leading to renal fibrosis. Moreover, macrophage infiltration causes podocytes' apoptosis and IL-6 mediated inflammation. As miR-29b is downregulated in diabetes and HDAC4, TGF-ß1 and IL-6 could be the possible therapeutic targets in DN, our study was focussed on unveiling the role of miR-29b in modulation of HDAC4 and hence, in podocyte dysfunction and renal fibrosis in DN. METHODS: In silico analysis and luciferase assay were done to study the interaction between miR-29b and HDAC4. In-vitro DN model was developed in podocytes and miR-29b mimics were transfected. Also, podocytes were co-cultured with macrophage and miR-29b mimics were transfected. At the end, in-vivo DN model was generated in C57BL/6 J male mice and the effect of miR-29b mimics was reconfirmed. RESULTS: It was found that miR-29b targets the 3' untranslated region of HDAC4. In both in-vitro and in-vivo DN model, downregulation of miR-29b and subsequent increase in HDAC4 expression was observed. The miR-29b mimics suppressed podocytes' inflammation mediated through macrophages and attenuated HDAC4 expression, glomerular damage and renal fibrosis. CONCLUSION: This study concludes that miR-29b regulates the expression of HDAC4 which plays a role in controlling renal fibrosis and podocytes' impairment in DN.

3.
Cell Mol Neurobiol ; 40(8): 1367-1381, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32198621

RESUMO

Hyperglycemia is one of the major risk factors responsible for memory impairment in diabetes which may lead to Alzheimer's disease (AD) at a later stage. MicroRNAs are a class of non-coding RNAs that are found to play a role in diabetes. Downregulation of microRNA-29b in diabetes is well reported. Moreover, microRNA-29b is also reported to target the 3' UTR of ß-secretase (BACE-1) enzyme which is involved in the formation of amyloid-beta (Aß) in AD via cleavage of amyloid precursor protein (APP). Therefore, the present study was designed to elucidate whether microRNA-29b could be a link between diabetes and dementia. In the in vitro and in vivo diabetic model, we found downregulation of microRNA-29b due to hyperglycemia. After human microRNA-29b treatment, there was a significant improvement in the short-term and spatial memory in diabetic mice. Also, the human microRNA-29b treatment decreased oxidative stress and BACE-1 activity in diabetes. The present findings revealed that the downregulation of microRNA-29b in diabetes could be associated with memory impairment and increased BACE-1 activity. These results would give a future direction to study the role played by microRNAs in diabetes-associated memory impairment and hence aid in the development of therapeutics to treat the same.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , MicroRNAs/genética , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo
4.
Drug Dev Res ; 81(2): 144-164, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31820484

RESUMO

Diabetes mellitus (DM) is a gradually rising metabolic disease which is currently affecting millions of people worldwide. Diabetes is associated with various complications like nephropathy, neuropathy, retinopathy, diabetic foot, cognitive impairment, and many more. Evidence suggests that cognitive dysfunction is a rising complication of diabetes which adversely affects the brain of patients suffering from diabetes. Age-related memory impairment is a complication having its major effect on people suffering from diabetes and Alzheimer's. Patients suffering from diabetes are at two times higher risk of developing cognitive dysfunction as compared with normal individuals. Multiple factors which are involved in diabetes related complications are found to play a role in the development of neurodegeneration in Alzheimer's. The problem of insulin deficiency and insulin resistance is well reported in diabetes but there are many studies which suggest dysregulation of insulin levels as a reason behind the development of Alzheimer's. As the link between diabetes and Alzheimer disease (AD) is deepening, there is a need to understand the plausible tie-ins between the two. Emerging role of major factors like insulin imbalance, advanced glycation end products and micro-RNA's involved in diabetes and Alzheimer's have been discussed here. This review helps in understanding the plausible mechanism underlying the pathophysiology of amyloid beta (Aß) plaque formation and tau hyperphosphorylation as well provides information about studies carried out in this area of research. The final thought is to enhance the scientific knowledge on this correlation and develop future therapeutics to treat the same.


Assuntos
Doença de Alzheimer/psicologia , Disfunção Cognitiva/etiologia , Diabetes Mellitus/psicologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Resistência à Insulina , MicroRNAs/genética , Fosforilação , Proteínas tau/metabolismo
5.
Drug Discov Today ; 24(10): 2058-2067, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228614

RESUMO

In the treatment of cancer, there are three significant limitations causing high mortality and recurrence rates among cancer patients. First, the escape of tumor cells from the immune system; second, the development of multi-drug resistance (MDR) to chemotherapeutic drugs; and, third, the noxious metastases of cancer cells. Exosomes are vesicular cargos involved in the transportation of miRNA, mRNA and proteins from one cell to another cell. This review details the current understanding of the exosomal transmission of miRNA and crosstalk with the downstream consequences, ultimately leading to the progression and metastasis of cancer. Further, this review also discusses how exosomal miRNA can provide promising novel targets for the treatment and detection of cancer.


Assuntos
Descoberta de Drogas/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Evasão da Resposta Imune/genética , MicroRNAs/genética , Metástase Neoplásica/genética , Neoplasias/genética , Neoplasias/patologia , Exossomos/efeitos dos fármacos , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , Modelos Biológicos , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA