Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4720, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830847

RESUMO

Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.


Assuntos
Adesivos Teciduais , Cicatrização , Animais , Humanos , Elasticidade , Células-Tronco Mesenquimais/citologia , Camundongos , Adesivo Tecidual de Fibrina , Masculino , Materiais Biocompatíveis/química
2.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559120

RESUMO

Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction, but their therapeutic efficacy is limited by inefficient accumulation at the target site. A non-invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post-infarct cardiac regeneration. Here we show that EVs decorated with the next-generation of high-affinity heterodimerizing leucine zippers, termed high-affinity (HiA) Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ∼7-fold enhanced accumulation within the infarcted myocardium in mice after three days and continued to be retained up to day 21, surpassing the performance of unmodified EVs. After myocardial infarction in mice, high-affinity Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and PBS, respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. High-affinity Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for non-invasive vesicle delivery to the infarcted heart. Translational Impact Statement: Therapeutic delivery to the heart remains inefficient and poses a bottleneck in modern drug delivery. Surgical application and intramyocardial injection of therapeutics carry high risks for most heart attack patients. To address these limitations, we have developed a non-invasive strategy for efficient cardiac accumulation of therapeutics using in situ crosslinking. Our approach achieves high cardiac deposition of therapeutics without invasive intramyocardial injections. Patients admitted with myocardial infarction typically receive intravenous access, which would allow painless administration of Zippersomes alongside standard of care.

3.
Biomater Sci ; 11(8): 2693-2698, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36994921

RESUMO

The discovery of new immune-modulating biomaterials is of significant value to immuno-engineering and therapy development. Here, we discovered that single-tailed heterocyclic carboxamide lipids preferentially modulated macrophages - but not dendritic cells - by interfering with sphingosine-1-phosphate-related pathways, consequently increasing interferon alpha expression. We further performed extensive downstream correlation analysis and determined key factors in physicochemical properties likely to modulate pro-inflammatory and anti-inflammatory immune responses. These properties will be useful for the rational design of the next generation of cell type-specific immune-modulating lipids.


Assuntos
Materiais Biocompatíveis , Macrófagos , Macrófagos/metabolismo , Materiais Biocompatíveis/metabolismo , Imunidade , Lipídeos
4.
Adv Healthc Mater ; 12(4): e2201094, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349814

RESUMO

There has been extensive interest in cellular therapies for the treatment of myocardial infarction, but bottlenecks concerning cellular accumulation and retention remain. Here, a novel system of in situ crosslinking mesenchymal stem cells (MSCs) for the formation of a living depot at the infarct site is reported. Bone marrow-derived mesenchymal stem cells that are surface decorated with heterodimerizing leucine zippers, termed ZipperCells, are engineered. When delivered intravenously in sequential doses, it is demonstrated that ZipperCells can migrate to the infarct site, crosslink, and show ≈500% enhanced accumulation and ≈600% improvement in prolonged retention at 10 days after injection compared to unmodified MSCs. This study introduces an advanced approach to creating noninvasive therapeutics depots using cellular crosslinking and provides the framework for future scaffold-free delivery methods for cardiac repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/terapia , Transplante de Células-Tronco Mesenquimais/métodos
5.
Int J Pharm ; 632: 122547, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36572264

RESUMO

The chemokine receptor CCR2 plays a key role in cellular migration and inflammatory processes. While tremendous progress has been made in elucidating CCR2 function and inhibition, the majority of approaches target its N-terminal domain and less is known about the function of the remaining extracellular loops and their potential as targets. Here, we used phage display to identify an antibody-derived scFv (single chain variable fragment) clone that specifically targets the second extracellular epitope of CCR2 (ECL2) for inhibition. Using in silico molecular docking, we identified six potential primary binding conformations of the novel scFv to the specified CCR2 epitope. In silico molecular dynamic analysis was used to determine conformational stability and identify protein-protein interactions. Umbrella sampling of a range of configurations with incrementally increasing separation of scFv and target generated by force pulling simulations was used to calculate binding energies. Downstream characterization by ELISA showed high binding affinity of the ECL2-scFv to CCR2. Furthermore, we showed that blocking the second extracellular loop inhibits macrophage migration and polarized macrophages towards M1 inflammatory cytokine production as potently as lipopolysaccharide (LPS). These studies highlight the applicability of epitope-specific targeting, emphasize the importance of in silico predictive modeling, and warrant further investigation into the role of the remaining epitopes of CCR2.


Assuntos
Anticorpos de Cadeia Única , Simulação de Acoplamento Molecular , Anticorpos de Cadeia Única/química , Epitopos , Simulação de Dinâmica Molecular , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA