Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 663041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113343

RESUMO

Despite the enormous morbidity attributed to schistosomiasis, there is still no vaccine to combat the disease for the hundreds of millions of infected people. The anthelmintic drug, praziquantel, is the mainstay treatment option, although its molecular mechanism of action remains poorly defined. Praziquantel treatment damages the outermost surface of the parasite, the tegument, liberating surface antigens from dying worms that invoke a robust immune response which in some subjects results in immunologic resistance to reinfection. Herein we term this phenomenon Drug-Induced Vaccination (DIV). To identify the antigenic targets of DIV antibodies in urogenital schistosomiasis, we constructed a recombinant proteome array consisting of approximately 1,000 proteins informed by various secretome datasets including validated proteomes and bioinformatic predictions. Arrays were screened with sera from human subjects treated with praziquantel and shown 18 months later to be either reinfected (chronically infected subjects, CI) or resistant to reinfection (DIV). IgG responses to numerous antigens were significantly elevated in DIV compared to CI subjects, and indeed IgG responses to some antigens were completely undetectable in CI subjects but robustly recognized by DIV subjects. One antigen in particular, a cystatin cysteine protease inhibitor stood out as a unique target of DIV IgG, so recombinant cystatin was produced, and its vaccine efficacy assessed in a heterologous Schistosoma mansoni mouse challenge model. While there was no significant impact of vaccination with adjuvanted cystatin on adult worm numbers, highly significant reductions in liver egg burdens (45-55%, P<0.0001) and intestinal egg burdens (50-54%, P<0.0003) were achieved in mice vaccinated with cystatin in two independent trials. This study has revealed numerous antigens that are targets of DIV antibodies in urogenital schistosomiasis and offer promise as subunit vaccine targets for a drug-linked vaccination approach to controlling schistosomiasis.


Assuntos
Antígenos de Helmintos/imunologia , Mapeamento de Epitopos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Praziquantel/farmacologia , Schistosoma haematobium/imunologia , Esquistossomose Urinária/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Mapeamento de Epitopos/métodos , Proteínas de Helminto/imunologia , Humanos , Imunização , Imunoglobulina G/imunologia , Camundongos , Carga Parasitária , Proteômica/métodos , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/imunologia , Esquistossomose Urinária/parasitologia , Esquistossomose Urinária/prevenção & controle , Vacinação
2.
Lancet Microbe ; 2(11): e617-e626, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34977830

RESUMO

BACKGROUND: Sensitive diagnostics are needed for effective management and surveillance of schistosomiasis so that current transmission interruption goals set by WHO can be achieved. We aimed to screen the Schistosoma haematobium secretome to find antibody biomarkers of schistosome infection, validate their diagnostic performance in samples from endemic populations, and evaluate their utility as point of care immunochromatographic tests (POC-ICTs) to diagnose urogenital schistosomiasis in the field. METHODS: We did a biomarker identification study, in which we constructed a proteome array containing 992 validated and predicted proteins from S haematobium and screened it with serum and urine antibodies from endemic populations in Gabon, Tanzania, and Zimbabwe. Arrayed antigens that were IgG-reactive and a select group of antigens from the worm extracellular vesicle proteome, predicted to be diagnostically informative, were then evaluated by ELISA using the same samples used to probe arrays, and samples from individuals residing in a low-endemicity setting (ie, Pemba and Unguja islands, Zanzibar, Tanzania). The two most sensitive and specific antigens were incorporated into POC-ICTs to assess their ability to diagnose S haematobium infection from serum in a field-deployable format. FINDINGS: From array probing, in individuals who were infected, 208 antigens were the targets of significantly elevated IgG responses in serum and 45 antigens were the targets of significantly elevated IgG responses in urine. Of the five proteins that were validated by ELISA, Sh-TSP-2 (area under the curve [AUC]serum=0·98 [95% CI 0·95-1·00]; AUCurine=0·96 [0·93-0·99]), and MS3_01370 (AUCserum=0·93 [0·89-0·97]; AUCurine=0·81 [0·72-0·89]) displayed the highest overall diagnostic performance in each biofluid and exceeded that of S haematobium-soluble egg antigen in urine (AUC=0·79 [0·69-0·90]). When incorporated into separate POC-ICTs, Sh-TSP-2 showed absolute specificity and a sensitivity of 75% and MS3_01370 showed absolute specificity and a sensitivity of 89%. INTERPRETATION: We identified numerous biomarkers of urogenital schistosomiasis that could form the basis of novel antibody diagnostics for this disease. Two of these antigens, Sh-TSP-2 and MS3_01370, could be used as sensitive, specific, and field-deployable diagnostics to support schistosomiasis control and elimination initiatives, with particular focus on post-elimination surveillance. FUNDING: Australian Trade and Investment Commission and Merck Global Health Institute.


Assuntos
Esquistossomose Urinária , Animais , Austrália , Biomarcadores , Feminino , Humanos , Imunoglobulina G , Masculino , Proteoma , Schistosoma haematobium , Esquistossomose Urinária/diagnóstico
3.
bioRxiv ; 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32511324

RESUMO

The current practice for diagnosis of SARS-CoV-2 infection relies on PCR testing of nasopharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk. This testing strategy likely underestimates the true prevalence of infection, creating the need for serologic methods to detect infections missed by the limited testing to date. Here, we describe the development of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A preliminary study of human sera collected prior to the SARS-CoV-2 pandemic demonstrates overall high IgG reactivity to common human coronaviruses and low IgG reactivity to epidemic coronaviruses including SARS-CoV-2, with some cross-reactivity of conserved antigenic domains including S2 domain of spike protein and nucleocapsid protein. This array can be used to answer outstanding questions regarding SARS-CoV-2 infection, including whether baseline serology for other coronaviruses impacts disease course, how the antibody response to infection develops over time, and what antigens would be optimal for vaccine development.

4.
J Infect Dis ; 216(1): 125-134, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535267

RESUMO

Background: Cholera is a severe dehydrating illness of humans caused by toxigenic strains of Vibrio cholerae O1 or O139. Identification of immunogenic V. cholerae antigens could lead to a better understanding of protective immunity in human cholera. Methods: We probed microarrays containing 3652 V. cholerae antigens with plasma and antibody-in-lymphocyte supernatant (ALS, a surrogate marker of mucosal immune responses) from patients with severe cholera caused by V. cholerae O1 in Bangladesh and age-, sex-, and ABO-matched Bangladeshi controls. We validated a subset of identified antigens using enzyme-linked immunosorbent assay. Results: Overall, we identified 608 immunoreactive V. cholerae antigens in our screening, 59 of which had higher immunoreactivity in convalescent compared with acute-stage or healthy control samples (34 in plasma, 39 in mucosal ALS; 13 in both sample sets). Identified antigens included cholera toxin B and A subunits, V. cholerae O-specific polysaccharide and lipopolysaccharide, toxin coregulated pilus A, sialidase, hemolysin A, flagellins (FlaB, FlaC, and FlaD), phosphoenolpyruvate-protein phosphotransferase, and diaminobutyrate-2-oxoglutarate aminotransferase. Conclusions: This study is the first antibody profiling of the mucosal and systemic antibody responses to the nearly complete V. cholerae O1 protein immunome; it has identified antigens that may aid in the development of an improved cholera vaccine.


Assuntos
Cólera/imunologia , Imunidade nas Mucosas , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Vibrio cholerae O1/imunologia , Adolescente , Adulto , Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Bangladesh/epidemiologia , Estudos de Casos e Controles , Cólera/epidemiologia , Toxina da Cólera/sangue , Feminino , Flagelina/sangue , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa/imunologia , Antígenos O/sangue , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/sangue , Fosfotransferases (Aceptor do Grupo Nitrogenado)/sangue , Reprodutibilidade dos Testes , Vibrio cholerae O1/isolamento & purificação , Vibrio cholerae O139/isolamento & purificação , Adulto Jovem
5.
Int J Parasitol ; 46(7): 411-5, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27131510

RESUMO

A proteome microarray consisting of 992 Schistosoma mansoni proteins was produced and screened with sera to determine antibody signatures indicative of the clinical stages of schistosomiasis and the identification of subunit vaccine candidates. Herein, we describe the methods used to derive the gene list for this array (representing approximately 10% of the predicted S. mansoni proteome). We also probed a pilot version of the microarray with sera from individuals either acutely or chronically infected with S. mansoni from endemic areas in Brazil and sera from individuals resident outside the endemic area (USA) to determine if the array is functional and informative.


Assuntos
Proteínas de Helminto/genética , Análise Serial de Proteínas , Proteoma/química , Schistosoma mansoni/química , Esquistossomose mansoni/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/química , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Biologia Computacional , Proteínas de Helminto/química , Proteínas de Helminto/imunologia , Soros Imunes/imunologia , Imunoglobulina G/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Projetos Piloto , Análise Serial de Proteínas/métodos , Proteoma/genética , Proteoma/imunologia , Schistosoma mansoni/genética , Schistosoma mansoni/imunologia , Esquistossomose mansoni/parasitologia
6.
PLoS Pathog ; 10(3): e1004033, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675823

RESUMO

Schistosomiasis is a neglected tropical disease that is responsible for almost 300,000 deaths annually. Mass drug administration (MDA) is used worldwide for the control of schistosomiasis, but chemotherapy fails to prevent reinfection with schistosomes, so MDA alone is not sufficient to eliminate the disease, and a prophylactic vaccine is required. Herein, we take advantage of recent advances in systems biology and longitudinal studies in schistosomiasis endemic areas in Brazil to pilot an immunomics approach to the discovery of schistosomiasis vaccine antigens. We selected mostly surface-derived proteins, produced them using an in vitro rapid translation system and then printed them to generate the first protein microarray for a multi-cellular pathogen. Using well-established Brazilian cohorts of putatively resistant (PR) and chronically infected (CI) individuals stratified by the intensity of their S. mansoni infection, we probed arrays for IgG subclass and IgE responses to these antigens to detect antibody signatures that were reflective of protective vs. non-protective immune responses. Moreover, probing for IgE responses allowed us to identify antigens that might induce potentially deleterious hypersensitivity responses if used as subunit vaccines in endemic populations. Using multi-dimensional cluster analysis we showed that PR individuals mounted a distinct and robust IgG1 response to a small set of newly discovered and well-characterized surface (tegument) antigens in contrast to CI individuals who mounted strong IgE and IgG4 responses to many antigens. Herein, we show the utility of a vaccinomics approach that profiles antibody responses of resistant individuals in a high-throughput multiplex approach for the identification of several potentially protective and safe schistosomiasis vaccine antigens.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Resistência à Doença/imunologia , Esquistossomose/imunologia , Vacinas/imunologia , Adolescente , Adulto , Anticorpos Anti-Helmínticos/imunologia , Brasil/epidemiologia , Doença Crônica , Análise por Conglomerados , Doenças Endêmicas , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Negligenciadas/imunologia , Análise Serial de Proteínas , Esquistossomose/sangue , Esquistossomose/epidemiologia , Adulto Jovem
7.
Proteomics Clin Appl ; 5(11-12): 613-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21956928

RESUMO

INTRODUCTION: Humoral immune responses play a pivotal role in naturally acquired immunity to malaria. Understanding which humoral responses are impaired among individuals at higher risk for malaria may improve our understanding of malaria immune control and contribute to vaccine development. METHODS: We compared humoral responses with 483 Plasmodium falciparum antigens between adults in, Kisumu (high, year-long malaria transmission leading to partial immunity), and adults in Kisii (low, seasonal malaria transmission). Then within each site, we compared malaria-specific humoral responses between those at higher risk for malaria (CD4(+) ≤500) and those at lower risk for malaria (CD4(+) >500). A protein microarray chip containing 483 P. falciparum antigens and 71 HIV antigens was used. Benjamini-Hochberg adjustments were made to control for multiple comparisons. RESULTS: Fifty-seven antigens including CSP, MSP1, LSA1 and AMA1 were identified as significantly more reactive in Kisumu than in Kisii. Ten of these antigens had been identified as protective in an earlier study. CD4(+) T-cell count did not significantly impact humoral responses. CONCLUSION: Protein microarrays are a useful method to screen multiple humoral responses simultaneously. This study provides useful clues for potential vaccine candidates. Modest decreases in CD4 counts may not significantly impact malaria-specific humoral immunity.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/parasitologia , Imunidade Humoral , Plasmodium falciparum/imunologia , Adulto , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Contagem de Linfócito CD4 , Doenças Endêmicas/prevenção & controle , Feminino , HIV-1 , Humanos , Quênia/epidemiologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Masculino , Plasmodium falciparum/patogenicidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA