Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 308: 107217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490110

RESUMO

Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H2 into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]­hydrogenases, which are the most efficient enzymes of microbes for catalytic H2 conversion. We have determined the stability and activity of two [FeFe]­hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Metaloproteínas , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Prótons , Catálise , Hidrogênio/química , Hidrogênio/metabolismo
2.
Chemistry ; : e202400690, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471074

RESUMO

Droplet formation via liquid-liquid phase separation is thought to be involved in the regulation of various biological processes, including enzymatic reactions. We investigated a glycolytic enzymatic reaction, the conversion of glucose-6-phosphate to 6-phospho-D-glucono-1,5-lactone with concomitant reduction of NADP+ to NADPH both in the absence and presence of dynamically controlled liquid droplet formation. Here, the nucleotide serves as substrate as well as the scaffold required for the formation of liquid droplets. To further expand the process parameter space, temperature and pressure dependent measurements were performed. Incorporation of the reactants in the liquid droplet phase led to a boost in enzymatic activity, which was most pronounced at medium-high pressures. The crowded environment of the droplet phase induced a marked increase of the affinity of the enzyme and substrate. An increase in turnover number in the droplet phase at high pressure contributed to a further strong increase in catalytic efficiency. Enzyme systems that are dynamically coupled to liquid condensate formation may be the key to deciphering many biochemical reactions. Expanding the process parameter space by adjusting temperature and pressure conditions can be a means to further increase the efficiency of industrial enzyme utilization and help uncover regulatory mechanisms adopted by extremophiles.

3.
Int J Biol Macromol ; 255: 128119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977458

RESUMO

Deep-sea organisms must cope with high hydrostatic pressures (HHP) up to the kbar regime to control their biomolecular processes. To alleviate the adverse effects of HHP on protein stability most organisms use high amounts of osmolytes. Little is known about the effects of these high concentrations on ligand binding. We studied the effect of the deep-sea osmolytes trimethylamine-N-oxide, glycine, and glycine betaine on the binding between lysozyme and the tri-saccharide NAG3, employing experimental and theoretical tools to reveal the combined effect of osmolytes and HHP on the conformational dynamics, hydration changes, and thermodynamics of the binding process. Due to their different chemical makeup, these cosolutes modulate the protein-sugar interaction in different ways, leading to significant changes in the binding constant and its pressure dependence. These findings suggest that deep-sea organisms may down- and up-regulate reactions in response to HHP stress by altering the concentration and type of the intracellular osmolyte.


Assuntos
Glicina , Metilaminas , Pressão Hidrostática , Termodinâmica , Glicina/química , Metilaminas/química
4.
Phys Chem Chem Phys ; 25(16): 11185-11191, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039266

RESUMO

The helical structure that cationic antimicrobial peptides (cAMPs) adopt upon interaction with membranes is key to their activity. We show that a high hydrostatic pressure not only increases the propensity of cAMPs to adopt a helical conformation in the presence of bacterial lipid bilayer membranes, but also in bulk solution, and the effect on bacterial membranes persists even up to 10 kbar. Therefore, high-pressure treatment could boost cAMP activity in high-pressure food processing to extend the shelf-life of food.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Bicamadas Lipídicas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Estrutura Secundária de Proteína , Bicamadas Lipídicas/química , Bactérias
5.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762833

RESUMO

Disease-associated progression of protein dysfunction is typically determined by an interplay of transition pathways leading to liquid-liquid phase separation (LLPS) and amyloid fibrils. As LLPS introduces another layer of complexity into fibrillization of metastable proteins, a need for tunable model systems to study these intertwined processes has emerged. Here, we demonstrate the LLPS/fibrillization properties of a family of chimeric peptides, ACC1-13Kn, in which the highly amyloidogenic fragment of insulin (ACC1-13) is merged with oligolysine segments of various lengths (Kn, n = 8, 16, 24, 32, 40). LLPS and fibrillization of ACC1-13Kn are triggered by ATP through Coulombic interactions with Kn fragments. ACC1-13K8 and ACC1-13K16 form fibrils after a short lag phase without any evidence of LLPS. However, in the case of the three longest peptides, ATP triggers instantaneous LLPS followed by the disappearance of droplets occurring in-phase with the formation of amyloid fibrils. The kinetics of the phase transition and the stability of mature co-aggregates are highly sensitive to ionic strength, indicating that electrostatic interactions play a pivotal role in selecting the LLPS-fibrillization transition pathway. Densely packed ionic interactions that characterize ACC1-13Kn-ATP fibrils render them highly sensitive to hydrostatic pressure due to solvent electrostriction, as demonstrated by infrared spectroscopy. Using atomic force microscopy imaging of rapidly frozen samples, we demonstrate that early fibrils form within single liquid droplets, starting at the droplet/bulk interface through the formation of single bent fibers. A hypothetical molecular scenario underlying the emergence of the LLPS-to-fibrils pathway in the ACC1-13Kn-ATP system has been put forward.

6.
Chem Rev ; 123(1): 73-104, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260784

RESUMO

Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.


Assuntos
Archaea , Sais , Sais/química , Bactérias , Ambientes Extremos
7.
Chemistry ; 28(48): e202201658, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35759377

RESUMO

The high colloidal stability of antibody (immunoglobulin) solutions is important for pharmaceutical applications. Inert cosolutes, excipients, are generally used in therapeutic protein formulations to minimize physical instabilities, such as liquid-liquid phase separation (LLPS), aggregation and precipitation, which are often encountered during manufacturing and storage. Despite their widespread use, a detailed understanding of how excipients modulate the specific protein-protein interactions responsible for these instabilities is still lacking. In this work, we demonstrate the high sensitivity to pressure of globulin condensates as a suitable means to suppress LLPS and subsequent aggregation of concentrated antibody solutions. The addition of excipients has only a minor effect. The high pressure sensitivity observed is due to the fact that these flexible Y-shaped molecules create a considerable amount of void volume in the condensed phase, leading to an overall decrease in the volume of the system upon dissociation of the droplet phase by pressure already at a few tens of to hundred bar. Moreover, we show that immunoglobulin molecules themselves are highly resistant to unfolding under pressure, and can even sustain pressures up to about 6 kbar without conformational changes. This implies that immunoglobulins are resistant to the pressure treatment of foods, such as milk, in high-pressure food-processing technologies, thereby preserving their immunological activity.


Assuntos
Anticorpos , Excipientes
8.
Colloids Surf B Biointerfaces ; 208: 112127, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626897

RESUMO

The application of co-solvents and high pressure has been shown to be an efficient means to modify the kinetics of enzyme-catalyzed reactions without compromising enzyme stability, which is often limited by temperature modulation. In this work, the high-pressure stopped-flow methodology was applied in conjunction with fast UV/Vis detection to investigate kinetic parameters of formate dehydrogenase reaction (FDH), which is used in biotechnology for cofactor recycling systems. Complementary FTIR spectroscopic and differential scanning fluorimetric studies were performed to reveal pressure and temperature effects on the structure and stability of the FDH. In neat buffer solution, the kinetic efficiency increases by one order of magnitude by increasing the temperature from 25° to 45 °C and the pressure from ambient up to the kbar range. The addition of particular co-solvents further doubled the kinetic efficiency of the reaction, in particular the compatible osmolyte trimethylamine-N-oxide and its mixtures with the macromolecular crowding agent dextran. The thermodynamic model PC-SAFT was successfully applied within a simplified activity-based Michaelis-Menten framework to predict the effects of co-solvents on the kinetic efficiency by accounting for interactions involving substrate, co-solvent, water, and FDH. Especially mixtures of the co-solvents at high concentrations were beneficial for the kinetic efficiency and for the unfolding temperature.


Assuntos
Formiato Desidrogenases , Cinética , Solventes , Temperatura , Termodinâmica
9.
Sci Rep ; 11(1): 16523, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400699

RESUMO

Studies of salt effects on enzyme activity have typically been conducted at standard temperatures and pressures, thus missing effects which only become apparent under non-standard conditions. Here we show that perchlorate salts, which are found pervasively on Mars, increase the activity of α-chymotrypsin at low temperatures. The low temperature activation is facilitated by a reduced enthalpy of activation owing to the destabilising effects of perchlorate salts. By destabilising α-chymotrypsin, the perchlorate salts also cause an increasingly negative entropy of activation, which drives the reduction of enzyme activity at higher temperatures. We have also shown that α-chymotrypsin activity appears to exhibit an altered pressure response at low temperatures while also maintaining stability at high pressures and sub-zero temperatures. As the effects of perchlorate salts on the thermodynamics of α-chymotrypsin's activity closely resemble those of psychrophilic adaptations, it suggests that the presence of chaotropic molecules may be beneficial to life operating in low temperature environments.

10.
Commun Biol ; 3(1): 550, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009512

RESUMO

Deep subsurface environments can harbour high concentrations of dissolved ions, yet we know little about how this shapes the conditions for life. We know even less about how the combined effects of high pressure influence the way in which ions constrain the possibilities for life. One such ion is perchlorate, which is found in extreme environments on Earth and pervasively on Mars. We investigated the interactions of high pressure and high perchlorate concentrations on enzymatic activity. We demonstrate that high pressures increase α-chymotrypsin enzyme activity even in the presence of high perchlorate concentrations. Perchlorate salts were shown to shift the folded α-chymotrypsin phase space to lower temperatures and pressures. The results presented here may suggest that high pressures increase the habitability of environments under perchlorate stress. Therefore, deep subsurface environments that combine these stressors, potentially including the subsurface of Mars, may be more habitable than previously thought.


Assuntos
Quimotripsina/metabolismo , Percloratos/efeitos adversos , Quimotripsina/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exobiologia , Meio Ambiente Extraterreno , Marte , Pressão Parcial , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico/efeitos dos fármacos , Temperatura
11.
Phys Chem Chem Phys ; 22(20): 11244-11248, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32400824

RESUMO

The arginine binding protein from T. maritima (ArgBP) exhibits several distinctive biophysical and structural properties. Here we show that ArgBP is also endowed with a ramarkable pressure stability as it undergoes minor structural changes only, even at 10 kbar. A similar stability is also observed for its folded fragments (truncated monomer and individual domains). A survey of literature data on the pressure stability of proteins highlights the uncommon behavior of ArgBP.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Thermotoga maritima/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Pressão , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Deleção de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Phys Chem Chem Phys ; 22(6): 3734-3743, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32010904

RESUMO

The chaperonin system GroEL-GroES is present in all kingdoms of life and rescues proteins from improper folding and aggregation upon internal and external stress conditions, including high temperatures and pressures. Here, we set out to explore the thermo- and piezostability of GroEL, GroES and the GroEL-GroES complex in the presence of cosolvents, nucleotides and salts employing quantitative FTIR spectroscopy and small-angle X-ray scattering. Owing to its high biological relevance and lack of data, our focus was especially on the effect of pressure on the chaperonin system. The experimental results reveal that the GroEL-GroES complex is remarkably temperature stable with an unfolding temperature beyond 70 °C, which can still be slightly increased by compatible cosolutes like TMAO. Conversely, the pressure stability of GroEL and hence the GroEL-GroES complex is rather limited and much less than that of monomeric proteins. Whereas GroES is pressure stable up to ∼5 kbar, GroEl and the GroEl-GroES complex undergo minor structural changes already beyond 1 kbar, which can be attributed to a dissociation-induced conformational drift. Quite unexpectedly, no significant unfolding of GroEL is observed even up to 10 kbar, however, i.e., the subunits themselves are very pressure stable. As for the physiological relevance, the structural integrity of the chaperonin system is retained in a relatively narrow pressure range, from about 1 to 1000 bar, which is just the pressure range encountered by life on Earth.


Assuntos
Chaperonina 10/química , Chaperonina 60/química , Meio Ambiente , Pressão , Estabilidade Proteica , Temperatura
13.
Biophys Chem ; 252: 106209, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254793

RESUMO

Thermodynamics and kinetics of biochemical reactions depend not only on temperature, but also on pressure and on the presence of cosolvents in the reaction medium. Understanding their effects on biochemical processes is a crucial step towards the design and optimization of industrially relevant enzymatic reactions. Such reactions typically do not take place in pure water. Cosolvents might be present as they are either required as stabilizer, as solubilizer, or in their function to overcome thermodynamic or kinetic limitations. Further, a vast number of enzymes has been found to be piezophilic or at least pressure-tolerant, meaning that nature has adapted them to high-pressure conditions. In this manuscript, we review existing data and we additionally present some new data on the combined cosolvent and pressure influence on the kinetics of biochemical reactions. In particular, we focus on cosolvent and pressure effects on Michaelis constants and catalytic constants of α-CT-catalysed peptide hydrolysis reactions. Two different substrates were considered in this work, N-succinyl-L-phenylalanine-p-nitroanilide and H-phenylalanine-p-nitroanilide. Urea, trimethyl-N-amine oxide, and dimethyl sulfoxide have been under investigation as these cosolvents are often applied in technical as well as in demonstrator systems. Pressure effects have been studied from ambient pressure up to 2 kbar. The existing literature data and the new data show that pressure and cosolvents must not be treated as independent effects. Non-additive interactions on a molecular level lead to a partially compensatory effect of cosolvents and pressure on the kinetic parameters of the hydrolysis reactions considered.


Assuntos
Biocatálise , Enzimas/metabolismo , Hidrólise , Pressão , Solventes/química , Enzimas/química , Cinética , Simulação de Dinâmica Molecular , Termodinâmica
14.
Chemphyschem ; 20(9): 1098-1109, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30829441

RESUMO

Tubulin is one of the main components of the cytoskeleton of eukaryotic cells. The formation of microtubules depends strongly on environmental and solution conditions, and has been found to be among the most pressure sensitive processes in vivo. We explored the effects of different types of cosolvents, such as trimethylamine-N-oxide (TMAO), sucrose and urea, and crowding agents to mimic cell-like conditions, on the temperature and pressure stability of the building block of microtubules, i. e. the α/ß-tubulin heterodimer. To this end, fluorescence and FTIR spectroscopy, differential scanning and pressure perturbation calorimetry as well as fluorescence anisotropy and correlation spectroscopies were applied. The pressure and temperature of dissociation of α/ß-tubulin as well as the underlying thermodynamic parameters upon dissociation, such as volume and enthalpy changes, have been determined for the different solution conditions. The temperature and pressure of dissociation of the α/ß-tubulin heterodimer and hence its stability increases dramatically in the presence of TMAO and the nanocrowder sucrose. We show that by adjusting the levels of compatible cosolutes and crowders, cells are able to withstand deteriorating effects of pressure even up to the kbar-range.

15.
Phys Chem Chem Phys ; 20(45): 28400-28411, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30238109

RESUMO

Actin and tubulin, the main components of the cytoskeleton, are responsible for many different cellular functions and can be found in nearly all eukaryotic cells. The formation of filamentous actin (F-actin) as well as microtubules depends strongly on environmental and solution conditions. The self-assembly of both, actin and tubulin, has been found to be among the most pressure sensitive process in vivo. Here, we explored the effects of various types of natural cosolvents, such as urea and the osmolyte trimethylamine-N-oxide (TMAO), on the temperature- and pressure-dependent stability of their polymeric states, F-actin and microtubules. Accumulation of TMAO by deep-sea animals is proposed to protect against destabilizing effects of pressure. The pressure and temperature of unfolding as well as associated enthalpy and volume changes have been determined using Fourier-transform infrared spectroscopy, covering a wide range of pressures and temperatures, ranging from 1 bar to 11 kbar and from 20 to 90 °C, respectively. Complementary thermodynamic measurements have been carried out using differential scanning and pressure perturbation calorimetry. The results obtained helped us explore the effect of the cellular milieu on the limitations of the pressure stability of cytoskeletal assemblies. Conversely to urea, the pressure stability of both polymers increases dramatically in the presence of TMAO, counteracting detrimental effects of both, urea and pressure.


Assuntos
Actinas/química , Metilaminas/química , Microtúbulos/química , Solventes/química , Tubulina (Proteína)/química , Ureia/química , Animais , Bovinos , Pressão , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estabilidade Proteica , Desdobramento de Proteína , Coelhos , Termodinâmica , Temperatura de Transição
16.
Chem Commun (Camb) ; 54(45): 5696-5699, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29691524

RESUMO

We report on the effects of pressure and cosolvents on the catalytic activity of a designed amyloid fibril by applying a high-pressure stopped-flow methodology with rapid spectroscopic detection. FTIR spectroscopic data revealed a remarkable pressure and temperature stability of the fibrillar catalyst. The activity is further enhanced by osmolytes and macromolecular crowding.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Solventes/química , Sequência de Aminoácidos , Catálise , Ficoll/química , Cinética , Metilaminas/química , Simulação de Dinâmica Molecular , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Ureia/química
17.
Phys Chem Chem Phys ; 20(3): 1347-1354, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29184921

RESUMO

High pressure is an important feature of certain natural environments, such as the deep sea where pressures up to about 1000 bar are encountered. Further, pressure effects on biosystems are of increasing interest for biotechnological applications, such as baroenzymology. We studied the effect of two different natural osmolyte mixtures, with major components being glycine and trimethylamine-N-oxide (TMAO), on the activity of α-chymotrypsin, using high-pressure stopped-flow methodology in combination with fast UV/Vis detection. We show that pressure is not only able to drastically enhance the catalytic activity and efficiency of the enzyme, but also that glycine has a significant and diverse effect on the enzymatic activity and volumetric properties of the reaction compared to TMAO. The results might not only help to understand the modulation of enzymatic reactions by natural osmolytes, but also elucidate ways to optimize enzymatic processes in biotechnological applications.


Assuntos
Quimotripsina/metabolismo , Glicina/química , Metilaminas/química , Quimotripsina/química , Glicina/metabolismo , Hidrólise , Cinética , Metilaminas/metabolismo , Concentração Osmolar , Pressão , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA