Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 14(1): 433, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838100

RESUMO

OBJECTIVE: Overconsumption of processed foods has led to an increase in chronic diet-related diseases such obesity and type 2 diabetes. Although diets high in fresh fruits and vegetables are linked with healthier outcomes, the specific mechanisms for these relationships are poorly understood. Experiments examining plant phytochemical production and breeding programs, or separately on the health effects of nutritional supplements have yielded results that are sparse, siloed, and difficult to integrate between the domains of human health and agriculture. To connect plant products to health outcomes through their molecular mechanism an integrated computational resource is necessary. RESULTS: We created the Aliment to Bodily Condition Knowledgebase (ABCkb) to connect plants to human health by creating a stepwise path from plant [Formula: see text] plant product [Formula: see text] human gene [Formula: see text] pathways [Formula: see text] indication. ABCkb integrates 11 curated sources as well as relationships mined from Medline abstracts by loading into a graph database which is deployed via a Docker container. This new resource, provided in a queryable container with a user-friendly interface connects plant products with human health outcomes for generating nutritive hypotheses. All scripts used are available on github ( https://github.com/atrautm1/ABCkb ) along with basic directions for building the knowledgebase and a browsable interface is available ( https://abckb.charlotte.edu ).


Assuntos
Diabetes Mellitus Tipo 2 , Bases de Dados Factuais , Humanos , Bases de Conhecimento , Melhoramento Vegetal , Verduras
2.
BMC Res Notes ; 13(1): 195, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238171

RESUMO

OBJECTIVE: Although sequencing and other high-throughput data production technologies are increasingly affordable, data analysis and interpretation remains a significant factor in the cost of -omics studies. Despite the broad acceptance of findable, accessible, interoperable, and reusable (FAIR) data principles which focus on data discoverability and annotation, data integration remains a significant bottleneck in linking prior work in order to better understand novel research. Relevant and timely information discovery is difficult for increasingly multi-disciplinary projects when scientists cannot easily keep up with work across multiple fields. Computational tools are necessary to accurately describe data contents, and empower linkage to existing resources without prior knowledge of the various database resources. RESULTS: We developed the Databio tool, accessible at https://datab.io/, to automate data parsing, identifier detection, and streamline common tasks to provide a point-and-click approach to data manipulation and integration in life sciences research and translational medicine. Databio uses fast real-time data structures and a data warehouse of 137 million identifiers, with automated heuristics to describe data provenance without highly specialized knowledge or bioinformatics training.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Processamento Eletrônico de Dados , Software , Internet , Interface Usuário-Computador , Fluxo de Trabalho
3.
BMC Biol ; 17(1): 92, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757219

RESUMO

BACKGROUND: Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS: The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS: The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.


Assuntos
Avena/genética , Cromossomos de Plantas/genética , Genoma de Planta , Diploide , Ligação Genética , Anotação de Sequência Molecular , Sintenia
4.
BMC Res Notes ; 11(1): 883, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541615

RESUMO

OBJECTIVES: Biomedical research is gaining ground on human disease through many types of "omics", which is leading to increasingly effective treatments and broad applications for precision medicine. The majority of disease treatments still revolve around drugs and biologics. Although food is consumed in much higher quantities, we understand very little about how the human body metabolizes and uses the full range of nutrients, or how these processes affect human health and disease risk. Nutrient composition databases are used by dietitians to describe common consumer food products, but these fail to identify chemicals with the same nomenclature as metabolic pathways in basic life sciences research and with far less precision. Consumer-oriented nutrient compositions often describe generic substances (e.g. Sugars) while scientific reporting is often much more specific (e.g. Dextrose, Fructose, etc.). Integrating these two fields of research presents a difficult challenge for novel applications of precision nutrition. DATA DESCRIPTION: This data set provides a manually curated collection of nutrient identifiers from the USDA's Nutrition Data Bases and maps them to PubChem (a resource for cheminformatics and drug discovery research), biomedical literature records in PubMed using Medical Subject Headings, biological pathways using the Chemical Entities of Biological Interest ontology.


Assuntos
Pesquisa Biomédica , Fenômenos Fisiológicos da Nutrição , Bases de Dados de Compostos Químicos , Humanos
5.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898818

RESUMO

Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes.


Assuntos
Avena/genética , Genoma de Planta/genética , Sintenia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Ligação Genética , Genótipo , América do Norte , Polimorfismo de Nucleotídeo Único , Poliploidia
6.
PLoS One ; 11(8): e0160519, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27490490

RESUMO

INTRODUCTION: Concise visualization is critical to present large amounts of information in a minimal space that can be interpreted quickly. Clinical applications in precision medicine present an important use case due to the time dependent nature of the interpretations, although visualization is increasingly necessary across the life sciences. In this paper we describe the Lollipops software for the presentation of panel or exome sequencing results. Source code and binaries are freely available at https://github.com/pbnjay/lollipops. Although other software and web resources exist to produce lollipop diagrams, these packages are less suited to clinical applications. The demands of precision medicine require the ability to easily fit into a workflow and incorporate external information without manual intervention. RESULTS: The Lollipops software provides a simple command line interface that only requires an official gene symbol and mutation list making it easily scriptable. External information is integrated using the publicly available Uniprot and Pfam resources. Heuristics are used to select the most informative components and condense them for a concise plot. The output is a flexible Scalable Vector Graphic (SVG) diagram that can be displayed in a web page or graphic illustration tool. CONCLUSION: The Lollipops software creates information-dense, publication-quality mutation plots for automated pipelines and high-throughput workflows in precision medicine. The automatic data integration enables clinical data security, and visualization heuristics concisely present knowledge with minimal user configuration.


Assuntos
Medicina de Precisão , Interface Usuário-Computador , Biologia Computacional , Humanos , Internet , Mutação
7.
Front Behav Neurosci ; 10: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834590

RESUMO

Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol.

8.
Genetics ; 197(4): 1377-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24923803

RESUMO

Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.


Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Consumo de Bebidas Alcoólicas/genética , Locos de Características Quantitativas , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Biologia Computacional , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Genoma , Genômica , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA
9.
Methods Mol Biol ; 1101: 13-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24233775

RESUMO

Functional genomics experiments and analyses give rise to large sets of results, each typically quantifying the relation of molecular entities including genes, gene products, polymorphisms, and other genomic features with biological characteristics or processes. There is tremendous utility and value in using these data in an integrative fashion to find convergent evidence for the role of genes in various processes, to identify functionally similar molecular entities, or to compare processes based on their genomic correlates. However, these gene-centered data are often deposited in diverse and non-interoperable stores. Therefore, integration requires biologists to implement computational algorithms and harmonization of gene identifiers both within and across species. The GeneWeaver web-based software system brings together a large data archive from diverse functional genomics data with a suite of combinatorial tools in an interactive environment. Account management features allow data and results to be shared among user-defined groups. Users can retrieve curated gene set data, upload, store, and share their own experimental results and perform integrative analyses including novel algorithmic approaches for set-set integration of genes and functions.


Assuntos
Anotação de Sequência Molecular/métodos , Animais , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Ontologia Genética , Estudos de Associação Genética , Genômica , Humanos , Disseminação de Informação , Internet , Modelos Genéticos , Locos de Características Quantitativas , Ferramenta de Busca , Software
10.
Int Rev Neurobiol ; 104: 1-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23195309

RESUMO

There is an increasing recognition of the value in integrating behavioral genomics data across species. The fragmentation of public resources, interoperability, and available representations present challenges due to the array of identifiers used to represent each genome feature. Once data are organized into a coherent collection, they can be integrated using a variety of methods to analyze convergent evidence for the roles of genes in behaviors. GeneWeaver.org is a web-based software system that employs many of these techniques and has been used in the study of complex behavior and addiction. These techniques will be increasingly necessary to understand global patterns emerging from experiments in behavioral genomics.


Assuntos
Bases de Dados Genéticas , Genômica , Integração de Sistemas , Animais , Humanos , Especificidade da Espécie
11.
BMC Bioinformatics ; 13 Suppl 10: S7, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22759431

RESUMO

BACKGROUND: A wealth of clustering algorithms has been applied to gene co-expression experiments. These algorithms cover a broad range of approaches, from conventional techniques such as k-means and hierarchical clustering, to graphical approaches such as k-clique communities, weighted gene co-expression networks (WGCNA) and paraclique. Comparison of these methods to evaluate their relative effectiveness provides guidance to algorithm selection, development and implementation. Most prior work on comparative clustering evaluation has focused on parametric methods. Graph theoretical methods are recent additions to the tool set for the global analysis and decomposition of microarray co-expression matrices that have not generally been included in earlier methodological comparisons. In the present study, a variety of parametric and graph theoretical clustering algorithms are compared using well-characterized transcriptomic data at a genome scale from Saccharomyces cerevisiae. METHODS: For each clustering method under study, a variety of parameters were tested. Jaccard similarity was used to measure each cluster's agreement with every GO and KEGG annotation set, and the highest Jaccard score was assigned to the cluster. Clusters were grouped into small, medium, and large bins, and the Jaccard score of the top five scoring clusters in each bin were averaged and reported as the best average top 5 (BAT5) score for the particular method. RESULTS: Clusters produced by each method were evaluated based upon the positive match to known pathways. This produces a readily interpretable ranking of the relative effectiveness of clustering on the genes. Methods were also tested to determine whether they were able to identify clusters consistent with those identified by other clustering methods. CONCLUSIONS: Validation of clusters against known gene classifications demonstrate that for this data, graph-based techniques outperform conventional clustering approaches, suggesting that further development and application of combinatorial strategies is warranted.


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise por Conglomerados , Genoma Fúngico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 40(Database issue): D1067-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080549

RESUMO

High-throughput genome technologies have produced a wealth of data on the association of genes and gene products to biological functions. Investigators have discovered value in combining their experimental results with published genome-wide association studies, quantitative trait locus, microarray, RNA-sequencing and mutant phenotyping studies to identify gene-function associations across diverse experiments, species, conditions, behaviors or biological processes. These experimental results are typically derived from disparate data repositories, publication supplements or reconstructions from primary data stores. This leaves bench biologists with the complex and unscalable task of integrating data by identifying and gathering relevant studies, reanalyzing primary data, unifying gene identifiers and applying ad hoc computational analysis to the integrated set. The freely available GeneWeaver (http://www.GeneWeaver.org) powered by the Ontological Discovery Environment is a curated repository of genomic experimental results with an accompanying tool set for dynamic integration of these data sets, enabling users to interactively address questions about sets of biological functions and their relations to sets of genes. Thus, large numbers of independently published genomic results can be organized into new conceptual frameworks driven by the underlying, inferred biological relationships rather than a pre-existing semantic framework. An empirical 'ontology' is discovered from the aggregate of experimental knowledge around user-defined areas of biological inquiry.


Assuntos
Bases de Dados Genéticas , Genômica/métodos , Gráficos por Computador , Genes , Internet , Software , Integração de Sistemas
13.
J Biomed Inform ; 44 Suppl 1: S5-S11, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21397722

RESUMO

Autism spectrum disorders (ASD) represent a group of developmental disabilities with a strong genetic basis. The laboratory mouse is increasingly used as a model organism for ASD, and MGI, the Mouse Genome Informatics resource, is the primary model organism database for the laboratory mouse. MGI uses the Mammalian Phenotype (MP) ontology to describe mouse models of human diseases. Using bioinformatics tools including Phenologs, MouseNET, and the Ontological Discovery Environment, we tested data associated with MP terms to characterize new gene-phenotype associations related to ASD. Our integrative analysis using these tools identified numerous mouse genotypes that are likely to have previously uncharacterized autistic-like phenotypes. The genes implicated in these mouse models had considerable overlap with a set of over 300 genes recently associated with ASD due to small, rare copy number variation (Pinto et al., 2010). Prediction and characterization of autistic mutant mouse alleles assists researchers in studying the complex nature of ASD and provides a generalizable approach to candidate gene prioritization.


Assuntos
Transtorno Autístico/genética , Alelos , Animais , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Modelos Animais de Doenças , Genômica , Humanos , Camundongos , Fenótipo , Interface Usuário-Computador
14.
Genomics ; 94(6): 377-87, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19733230

RESUMO

The wealth of genomic technologies has enabled biologists to rapidly ascribe phenotypic characters to biological substrates. Central to effective biological investigation is the operational definition of the process under investigation. We propose an elucidation of categories of biological characters, including disease relevant traits, based on natural endogenous processes and experimentally observed biological networks, pathways and systems rather than on externally manifested constructs and current semantics such as disease names and processes. The Ontological Discovery Environment (ODE) is an Internet accessible resource for the storage, sharing, retrieval and analysis of phenotype-centered genomic data sets across species and experimental model systems. Any type of data set representing gene-phenotype relationships, such quantitative trait loci (QTL) positional candidates, literature reviews, microarray experiments, ontological or even meta-data, may serve as inputs. To demonstrate a use case leveraging the homology capabilities of ODE and its ability to synthesize diverse data sets, we conducted an analysis of genomic studies related to alcoholism. The core of ODE's gene set similarity, distance and hierarchical analysis is the creation of a bipartite network of gene-phenotype relations, a unique discrete graph approach to analysis that enables set-set matching of non-referential data. Gene sets are annotated with several levels of metadata, including community ontologies, while gene set translations compare models across species. Computationally derived gene sets are integrated into hierarchical trees based on gene-derived phenotype interdependencies. Automated set identifications are augmented by statistical tools which enable users to interpret the confidence of modeled results. This approach allows data integration and hypothesis discovery across multiple experimental contexts, regardless of the face similarity and semantic annotation of the experimental systems or species domain.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Redes Reguladoras de Genes , Genômica/métodos , Genótipo , Fenótipo , Alcoolismo/genética , Animais , Lesões Encefálicas/genética , Biologia Computacional/organização & administração , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas/estatística & dados numéricos , Genômica/estatística & dados numéricos , Humanos , Internet , Invertebrados/genética , Transtornos Mentais/genética , Camundongos , Modelos Genéticos , Locos de Características Quantitativas , Ratos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Interface Usuário-Computador , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA