Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635047

RESUMO

Spalt-like 4 (SALL4) maintains vertebrate embryonic stem cell identity and is required for the development of multiple organs, including limbs. Mutations in SALL4 are associated with Okihiro syndrome, and SALL4 is also a known target of thalidomide. SALL4 protein has a distinct preference for AT-rich sequences, recognised by a pair of zinc fingers at the C-terminus. However, unlike many characterised zinc finger proteins, SALL4 shows flexible recognition with many different combinations of AT-rich sequences being targeted. SALL4 interacts with the NuRD corepressor complex which potentially mediates repression of AT-rich genes. We present a crystal structure of SALL4 C-terminal zinc fingers with an AT-rich DNA sequence, which shows that SALL4 uses small hydrophobic and polar side chains to provide flexible recognition in the major groove. Missense mutations reported in patients that lie within the C-terminal zinc fingers reduced overall binding to DNA but not the preference for AT-rich sequences. Furthermore, these mutations altered association of SALL4 with AT-rich genomic sites, providing evidence that these mutations are likely pathogenic.


Assuntos
Síndrome da Retração Ocular , Fatores de Transcrição , Humanos , Síndrome da Retração Ocular/genética , Síndrome da Retração Ocular/metabolismo , Síndrome da Retração Ocular/patologia , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
2.
RNA ; 29(2): 178-187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456182

RESUMO

The NMD helicase UPF1 is a prototype of the superfamily 1 (SF1) of RNA helicases that bind RNA with high affinity and translocate on it in an ATP-dependent manner. Previous studies showed that UPF1 has a low basal catalytic activity that is greatly enhanced upon binding of its interaction partner, UPF2. Activation of UPF1 by UPF2 entails a large conformational change that switches the helicase from an RNA-clamping mode to an RNA-unwinding mode. The ability of UPF1 to bind RNA was expected to be unaffected by this activation mechanism. Here we show, using a combination of biochemical and biophysical methods, that binding of UPF2 to UPF1 drastically reduces the affinity of UPF1 for RNA, leading to a release of the bound RNA. Although UPF2 is capable of binding RNA in vitro, our results suggest that dissociation of the UPF1-RNA complex is not a consequence of direct competition in RNA binding but rather an allosteric effect that is likely mediated by the conformational change in UPF1 that is induced upon binding its activator. We discuss these results in light of transient interactions forged during mRNP assembly, particularly in the UPF1-dependent mRNA decay pathways.


Assuntos
RNA Helicases , Proteínas de Ligação a RNA , Transativadores , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Humanos
3.
Nucleic Acids Res ; 50(5): 2923-2937, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34302485

RESUMO

Ssd1, a conserved fungal RNA-binding protein, is important in stress responses, cell division and virulence. Ssd1 is closely related to Dis3L2 of the RNase II family of nucleases, but lacks catalytic activity and likely suppresses translation of bound mRNAs. Previous studies identified RNA motifs enriched in Ssd1-associated transcripts, yet the sequence requirements for Ssd1 binding are not defined. Here, we identify precise binding sites of Ssd1 on RNA using in vivo cross-linking and cDNA analysis. These sites are enriched in 5' untranslated regions of a subset of mRNAs encoding cell wall proteins. We identified a conserved bipartite motif that binds Ssd1 with high affinity in vitro. Active RNase II enzymes have a characteristic, internal RNA binding path; the Ssd1 crystal structure at 1.9 Å resolution shows that remnants of regulatory sequences block this path. Instead, RNA binding activity has relocated to a conserved patch on the surface of the protein. Structure-guided mutations of this surface prevent Ssd1 from binding RNA in vitro and phenocopy Ssd1 deletion in vivo. These studies provide a new framework for understanding the function of a pleiotropic post-transcriptional regulator of gene expression and give insights into the evolution of regulatory and binding elements in the RNase II family.


Assuntos
Exorribonucleases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regiões 5' não Traduzidas , Exorribonucleases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Methods Mol Biol ; 2205: 161-177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32809199

RESUMO

Creating DNA constructs is a basic and fundamental step in molecular and synthetic biology. While prices for gene synthesis are decreasing, it is still more economical in most cases to assemble constructs from a library of components (Parts). Many methods for DNA assembly are available, but most require either a fixed and inflexible format for the construct, with all Parts first being cloned in specific donor plasmids, or remaking Parts with new homology ends for each specific assembly reaction, requiring large numbers of single-use oligonucleotides. PaperClip assembly allows Parts stored in any format (linear PCR products or synthetic DNA, or cloned in any plasmid) to be used in totally flexible assembly reactions; up to 11 parts can be assembled in a single reaction, in any order, to give a linear or circular construct, and the oligonucleotides required in the assembly process can be reused in any subsequent assembly. In addition to constructing plasmids for bacterial transformation, PaperClip is also well suited to generate linear products for direct transfection of yeast, mammalian, or cyanobacterial cell lines. Thus, PaperClip offers a simple, flexible, and economical route to multipart assembly of constructs for a wide variety of purposes.


Assuntos
Clonagem Molecular/métodos , DNA/genética , Sequência de Bases , Biblioteca Gênica , Oligonucleotídeos/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , Biologia Sintética/métodos
5.
Nat Commun ; 7: 11789, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250689

RESUMO

Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits.


Assuntos
Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
6.
Nucleic Acids Res ; 44(4): 1924-36, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26712564

RESUMO

Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3' untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs.


Assuntos
Adenosina Desaminase/química , Complexos Multiproteicos/química , Proteínas do Fator Nuclear 90/química , Proteínas de Ligação a RNA/química , Adenosina Desaminase/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica , Humanos , Complexos Multiproteicos/genética , Proteínas do Fator Nuclear 90/genética , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
7.
Nat Commun ; 5: 2964, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24413531

RESUMO

The ability of kinetochores (KTs) to maintain stable attachments to dynamic microtubule structures ('straight' during microtubule polymerization and 'curved' during microtubule depolymerization) is an essential requirement for accurate chromosome segregation. Here we show that the kinetochore-associated Ska complex interacts with tubulin monomers via the carboxy-terminal winged-helix domain of Ska1, providing the structural basis for the ability to bind both straight and curved microtubule structures. This contrasts with the Ndc80 complex, which binds straight microtubules by recognizing the dimeric interface of tubulin. The Ska1 microtubule-binding domain interacts with tubulins using multiple contact sites that allow the Ska complex to bind microtubules in multiple modes. Disrupting either the flexibility or the tubulin contact sites of the Ska1 microtubule-binding domain perturbs normal mitotic progression, explaining the critical role of the Ska complex in maintaining a firm grip on dynamic microtubules.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Caenorhabditis elegans , Proteínas do Citoesqueleto , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Nucleares , Estrutura Terciária de Proteína
8.
Mol Cell ; 46(3): 274-86, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22483620

RESUMO

The Ska complex is an essential mitotic component required for accurate cell division in human cells. It is composed of three subunits that function together to establish stable kinetochore-microtubule interactions in concert with the Ndc80 network. We show that the structure of the Ska core complex is a W-shaped dimer of coiled coils, formed by intertwined interactions between Ska1, Ska2, and Ska3. The C-terminal domains of Ska1 and Ska3 protrude at each end of the homodimer, bind microtubules in vitro when connected to the central core, and are essential in vivo. Mutations disrupting the central coiled coil or the dimerization interface result in chromosome congression failure followed by cell death. The Ska complex is thus endowed with bipartite and cooperative tubulin-binding properties at the ends of a 350 Å-long molecule. We discuss how this symmetric architecture might complement and stabilize the Ndc80-microtubule attachments with analogies to the yeast Dam1/DASH complex.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Cinetocoros/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
9.
Structure ; 19(11): 1625-34, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22032967

RESUMO

Localization of the chromosomal passenger complex (CPC) at centromeres during early mitosis is essential for accurate chromosome segregation and is dependent on the phosphorylation of histone H3. We report the 2.7 Å resolution structure of the CPC subunit Survivin bound to the N-terminal tail of histone H3 carrying the Thr3 phosphorylation mark (Thr3ph). The BIR domain of Survivin recognizes the Ala1-Arg2-Thr3ph-Lys4 sequence, decoding the modification state and the free N terminus of histone H3 by a strategy similar to that used by PHD fingers. The structural analysis permitted the identification of putative Survivin-binding epitopes in other mitotic proteins, including human Shugoshin 1. Using biophysical and structural data, we show that a phospho-mimic N-terminal sequence such as that of hSgo1 (Ala1-Lys2-Glu3-Arg4) contains the specificity determinants to bind Survivin. Our findings suggest that the CPC engages in mutually exclusive interactions with other constituents of the mitotic machinery and a histone mark in chromatin.


Assuntos
Histonas/química , Proteínas Inibidoras de Apoptose/química , Complexos Multiproteicos/química , Fosfoproteínas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Mitose , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Propriedades de Superfície , Survivina
10.
Mol Cell ; 41(6): 693-703, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21419344

RESUMO

Upf1 is a crucial factor in nonsense-mediated mRNA decay, the eukaryotic surveillance pathway that degrades mRNAs containing premature stop codons. The essential RNA-dependent ATPase activity of Upf1 is triggered by the formation of the surveillance complex with Upf2-Upf3. We report crystal structures of Upf1 in the presence and absence of the CH domain, captured in the transition state with ADP:AlF4⁻ and RNA. In isolation, Upf1 clamps onto the RNA, enclosing it in a channel formed by both the catalytic and regulatory domains. Upon binding to Upf2, the regulatory CH domain of Upf1 undergoes a large conformational change, causing the catalytic helicase domain to bind RNA less extensively and triggering its helicase activity. Formation of the surveillance complex thus modifies the RNA binding properties and the catalytic activity of Upf1, causing it to switch from an RNA-clamping mode to an RNA-unwinding mode.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/metabolismo , Estrutura Terciária de Proteína , Transativadores/química , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nucleotídeos/metabolismo , RNA/genética , RNA/metabolismo , RNA Helicases , Estabilidade de RNA/genética , Proteínas de Ligação a RNA , Recombinases Rec A/química , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Transativadores/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
11.
Genes Dev ; 24(21): 2440-50, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20930030

RESUMO

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades mRNAs containing premature stop codons (PTCs). In vertebrates, PTCs trigger efficient NMD when located upstream of an exon junction complex (EJC). Degradation of PTC-containing mRNAs requires the endonucleolytic activity of SMG6, a conserved NMD factor; nevertheless, the precise role for the EJC in NMD and how the SMG6 endonuclease is recruited to NMD targets have been unclear. Here we show that SMG6 interacts directly with the EJC via two conserved EJC-binding motifs (EBMs). We further show that the SMG6-EJC interaction is required for NMD. Our results reveal an unprecedented role for the EJC in recruiting the SMG6 endonuclease to NMD targets. More generally, our findings identify the EBM as a protein motif present in a handful of proteins, and suggest that EJCs establish multiple and mutually exclusive interactions with various protein partners, providing a plausible explanation for the myriad functions performed by this complex in post-transcriptional mRNA regulation.


Assuntos
Motivos de Aminoácidos/genética , Éxons/genética , Estabilidade de RNA/genética , Telomerase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Códon sem Sentido , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Telomerase/genética
12.
Proc Natl Acad Sci U S A ; 107(22): 10050-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479275

RESUMO

In mammals, Up-frameshift proteins (UPFs) form a surveillance complex that interacts with the exon junction complex (EJC) to elicit nonsense-mediated mRNA decay (NMD). UPF3b is the component of the surveillance complex that bridges the interaction with the EJC. Here, we report the 3.4 A resolution crystal structure of a minimal UPF3b-EJC assembly, consisting of the interacting domains of five proteins (UPF3b, MAGO, Y14, eIF4AIII, and Barentsz) together with RNA and adenylyl-imidodiphosphate. Human UPF3b binds with the C-terminal domain stretched over a composite surface formed by eIF4AIII, MAGO, and Y14. Residues that affect NMD when mutated are found at the core interacting surfaces, whereas differences between UPF3b and UPF3a map at peripheral interacting residues. Comparison with the binding mode of the protein PYM underscores how a common molecular surface of MAGO and Y14 recognizes different proteins acting at different times in the same pathway. The binding mode to eIF4AIII identifies a surface hot spot that is used by different DEAD-box proteins to recruit their regulators.


Assuntos
Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Células HeLa , Humanos , Técnicas In Vitro , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA