RESUMO
Membrane pores are exploited for the stochastic sensing of various analytes, and here, we use electrical recordings to explore the interaction of PEGylated peptides of different sizes with a protein pore, CymA. This wide-diameter natural pore comprises densely filled charged residues, facilitating electrophoretic binding of polyethylene glycol (PEG) tagged with a nonaarginine peptide. The small PEG 200 peptide conjugates produced monodisperse blockages and exhibited voltage-dependent translocation across the pores. Notably, the larger PEG 1000 and 2000 peptide conjugates yielded heterogeneous blockages, indicating a multitude of PEG conformations hindering their translocation through the pore. Furthermore, a much larger PEG 5000 peptide occludes the pore entrance, resulting in complete closure. The competitive binding of different PEGylated peptides with the same pore produced specific blockage signals reflecting their identity, size, and conformation. Our proposed model of sensing distinct polypeptide conformations corresponds to disordered protein unfolding, suggesting that this pore can find applications in proteomics.
Assuntos
Nanoporos , Peptídeos/química , Conformação Molecular , Polietilenoglicóis/químicaRESUMO
Dual-ion batteries (DIBs) are considered one of the promising energy storage devices in which graphite serves as a bi-functional electrode, i.e., anode and cathode in the aprotic organic solvents. Unlike conventional lithium-ion batteries (LIBs), DIBs reversibly store the cations and anions in the anode and cathodes during redox reactions, respectively. The electrolyte is a source for both cations and anions, so the choice of electrolyte plays a vital role. In the present work, the synthesis of SnO2 nanostructures is reported as a possible alternative for graphite anode, and the Li-storage performance is optimized in half-cell (Li/SnO2 ) assembly with varying amounts of conductive additive (acetylene black) and limited working potential (1 V vs Li). Finally, a DIB using recovered graphite (RG) fabricated from spent LIB as a cathode and SnO2 nanostructures as an anode under balanced loading conditions. Prior to the fabrication, both electrodes are pre-cycled to eliminate irreversibility. An in-situ impedance study has been employed to validate the passivation layer formation during the charge-discharge process. The high-performance SnO2 /RG-based DIB delivered a maximum discharge capacity of 380 mAh g-1 . The electrochemical performance of DIB has been assessed by varying temperature conditions to evaluate their suitability in different climatic conditions.
RESUMO
Amyloid deposition of the microtubule-associated protein tau is associated with neurodegenerative diseases. In frontotemporal dementia with abnormal tau (FTD-tau), missense mutations in tau enhance its aggregation propensity. Here we describe the structural mechanism for how an FTD-tau S320F mutation drives spontaneous aggregation, integrating data from in vitro, in silico and cellular experiments. We find that S320F stabilizes a local hydrophobic cluster which allosterically exposes the 306VQIVYK311 amyloid motif; identify a suppressor mutation that destabilizes S320F-based hydrophobic clustering reversing the phenotype in vitro and in cells; and computationally engineer spontaneously aggregating tau sequences through optimizing nonpolar clusters surrounding the S320 position. We uncover a mechanism for regulating tau aggregation which balances local nonpolar contacts with long-range interactions that sequester amyloid motifs. Understanding this process may permit control of tau aggregation into structural polymorphs to aid the design of reagents targeting disease-specific tau conformations.
Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Mutação , Proteínas tau/metabolismo , Mutação de Sentido Incorreto , Amiloide/genética , Proteínas Amiloidogênicas/genéticaRESUMO
Identifying the determinants of positive coping is a critical step in empowering the parents of children with intellectual disability. In this context, this study aims to develop a scale to assess the determinants of positive coping. Accordingly, culturally relevant items were pooled, got validated by experts and refined. The scale was administered to 150 parents of children with intellectual disability. Factor analysis done through polychoric correlation helped reduce the items. Cronbach's alpha coefficients were established for reliability testing. The validity of the new scale was examined with the subjective wellbeing on a visual analogue scale and Family Interview for Stress and Coping in Mental Retardation. The new scale has a Cronbach's alpha of 0.71 and an intraclass correlation of 0.64. After factor analysis, 12 items were retained in the final version. This study also identified specific factors associated with positive coping. The new scale can be used with parents of children with intellectual disabilities to identify the determinants of positive coping.
Assuntos
Deficiência Intelectual , Humanos , Criança , Reprodutibilidade dos Testes , Pais , Adaptação Psicológica , Inquéritos e Questionários , PsicometriaRESUMO
Different cryo-EM derived atomic models of inâ vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule-binding domain. In comparison, only the R3 repeat forms the core of the heparin-induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an inâ vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self-aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self-aggregation of R3R4. We identified the hexapeptide region in R3 and ß-turn region in R4 as the aggregation initiating region of the protein. The solid-state NMR of self-aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the inâ vivo aggregation process.
Assuntos
Peptídeos/metabolismo , Proteínas tau/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Proteínas tau/químicaRESUMO
Although the conformation of the polymer chain of Ubiquitin (Ub) mainly depends on the type of isopeptide linkage connecting two Ub molecules, the non-covalent (noncovalent) interaction between two Ub molecules within the chain could also tune their conformational preference. Here, we studied the conformation of noncovalently formed Ub dimers in solution using residual dipolar couplings (RDCs). Comparing the RDC derived alignment tensor of the noncovalently formed dimer with the two most abundant (K11 and K48) covalent linked Ub dimers revealed that the conformation of K11 linked and noncovalent Ub dimers were similar. Between the various NMR and crystal structures of K11 linked Ub dimers, RDC tensor analysis showed that the structure of K11 linked dimer crystalized at neutral pH is similar to noncovalent dimer. Analogous to the experimental study, the comparison of predicted order matrix of various covalent Ub dimers with that of the experimentally determined order matrix of noncovalent Ub dimer also suggests that the conformation of K11 linked dimers crystalized at neutral pH is similar to the noncovalent dimer.