Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(11): e18460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864710

RESUMO

Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.


Assuntos
Dependovirus , Fator VIII , Vetores Genéticos , Hemofilia A , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , RNA Longo não Codificante , Animais , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/complicações , Dependovirus/genética , RNA Longo não Codificante/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Camundongos , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Fator VIII/genética , Fator VIII/metabolismo , Artropatias/terapia , Artropatias/genética , Artropatias/etiologia , Humanos , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Masculino
2.
Thromb Res ; 238: 151-160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718473

RESUMO

It is crucial to develop a long-term therapy that targets hemophilia A and B, including inhibitor-positive patients. We have developed an Adeno-associated virus (AAV) based strategy to integrate the bypass coagulation factor, activated FVII (murine, mFVIIa) gene into the Rosa26 locus using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 mediated gene-editing. AAV vectors designed for expression of guide RNA (AAV8-gRNA), Cas9 (AAV2 neddylation mutant-Cas9), and mFVIIa (AAV8-mFVIIa) flanked by homology arms of the target locus were validated in vitro. Hemophilia B mice were administered with AAV carrying gRNA, Cas9 (1 × 1011 vgs/mouse), and mFVIIa with homology arms (2 × 1011 vgs/mouse) with appropriate controls. Functional rescue was documented with suitable coagulation assays at various time points. The data from the T7 endonuclease assay revealed a cleavage efficiency of 20-42 %. Further, DNA sequencing confirmed the targeted integration of mFVIIa into the safe-harbor Rosa26 locus. The prothrombin time (PT) assay revealed a significant reduction in PT in mice that received the gene-editing vectors (22 %), and a 13 % decline in mice that received only the AAV-FVIIa when compared to mock treated mice, 8 weeks after vector administration. Furthermore, FVIIa activity in mice that received triple gene-editing vectors was higher (122.5mIU/mL vs 28.8mIU/mL) than the mock group up to 15 weeks post vector administration. A hemostatic challenge by tail clip assay revealed that hemophilia B mice injected with only FVIIa or the gene-editing vectors had significant reduction in blood loss. In conclusion, AAV based gene-editing facilitates sustained expression of coagulation FVIIa and phenotypic rescue in hemophilia B mice.


Assuntos
Dependovirus , Modelos Animais de Doenças , Hemofilia B , Animais , Hemofilia B/terapia , Hemofilia B/genética , Dependovirus/genética , Camundongos , Fenótipo , Edição de Genes/métodos , Hemorragia/genética , Hemorragia/terapia , Fator VIIa , Humanos , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Vetores Genéticos , Sistemas CRISPR-Cas , Engenharia Genética/métodos
3.
Stem Cell Res ; 77: 103413, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631180

RESUMO

Leber Congenital Amaurosis 2 is an early onset retinal dystrophy that occurs due to mutation in RPE65 gene. Here, we report the generation of two patient specific induced pluripotent stem cell lines harboring nonsense mutations in exon 7 (c.646A > T) and exon 9 (c.992G > A) of RPE65 gene, respectively, which leads to premature translational termination and formation of defective protein. These lines were generated by the reprogramming of human dermal fibroblast cells using integration-free, episomal constructs expressing stemness genes. The stable lines maintained a normal karyotype, expressed the key stemness factors, underwent trilineage differentiation, and maintained their genetic identity and genomic integrity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Amaurose Congênita de Leber , cis-trans-Isomerases , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Mutação , Linhagem Celular , Diferenciação Celular , Masculino , Fibroblastos/metabolismo , Feminino
4.
Mol Ther Methods Clin Dev ; 31: 101166, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38149057

RESUMO

Breast carcinoma has one of the highest incidence rates (11.7%), with significant clinical heterogeneity. Although conventional chemotherapy and surgical resection are the current standard of care, the resistance and recurrence, after these interventions, necessitate alternate therapeutic approaches. Cancer gene therapy for breast cancer with the suicide gene is an attractive option due to their directed delivery into the tumor. In this study, we have developed a novel treatment strategy against breast cancer with recombinant adeno-associated virus (AAV) serotype 6 vectors carrying a suicide gene, inducible Caspase 9 (iCasp9). Upon treatment with AAV6-iCasp9 vectors and the chemical inducer of dimerizer, AP20187, the viability of murine breast cancer cells (4T1) was significantly reduced to ∼40%-60% (mock control 100%). Following intratumoral delivery of AAV6-iCasp9 vectors in an orthotopic breast cancer mouse model, we observed a significant increase in iCasp9 transgene expression and a significant reduction in tumor growth rate. At the molecular level, immunohistochemical analysis demonstrated subsequent activation of the effector caspase 3 and cellular death. These data highlight the potential of AAV6-iCasp9-based suicide gene therapy for aggressive breast cancer in patients.

5.
Thromb Res ; 231: 8-16, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741049

RESUMO

Hemophilic arthropathy (HA) due to repeated bleeding into the joint cavity is a major cause of morbidity in patients with hemophilia. The molecular mechanisms contributing to this condition are not well characterized. MicroRNAs (miRs) are known to modulate the phenotype of multiple joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). Since miR125a is known to modulate disease progression in OA and RA, we performed a targeted screen of miR125a-5p and its target genes in a murine model of chronic HA. A digital PCR analysis demonstrated significant downregulation of miR125a-5p (2-fold vs control joint). Further molecular evaluation revealed elevated expression of the immunological markers STAT1 (7.6-fold vs control joint) and TRAF6 (10.6 fold vs control joint), which are direct targets of miR125a-5p. We then studied the impact of targeted overexpression of miR125a-5p using an Adeno-associated virus (AAV) vector in modulating the molecular mediators of HA. AAV5-miR125a vectors were administered intra-articularly either alone or in combination with a low dose of AAV8-based human factor 8 (F8) gene in a murine model of HA. We observed significantly increased expression of miR125a-5p in AAV5-miR125a administered mice (~12 fold vs injured joint) or in combination with AAV8-F8 vectors (~44 fold vs injured joint). The activity assay revealed ~17 %-20 % FVIII levels in mice that received low dose liver-directed F8 gene therapy. Further immunohistochemical analysis, demonstrated a decrease in inflammatory markers (STAT1 and TRAF6) and cartilage-degrading matrix metalloproteinases (MMPs) 3, 9, 13 in the joints of treated animals. These data highlight the crucial role of miR125a-5p in the development of HA.


Assuntos
Hemofilia A , Artropatias , Humanos , Camundongos , Animais , Fator VIII/genética , Fator VIII/uso terapêutico , Fator VIII/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Modelos Animais de Doenças , Artropatias/genética , Hemofilia A/complicações , Hemofilia A/genética , Hemofilia A/metabolismo
7.
Cell Rep Med ; 3(5): 100641, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584635

RESUMO

A major cause of infertility in women is impaired ovulation or oogenesis. In this issue of Cell Reports Medicine, Kanatsu-Shinohara et al.1 demonstrate the potential of gene delivery with adeno-associated virus that can cross the blood-follicle barrier and restore oogenesis in congenitally infertile mice.


Assuntos
Infertilidade Feminina , Animais , Feminino , Terapia Genética , Humanos , Infertilidade Feminina/genética , Camundongos , Oogênese/genética , Folículo Ovariano , Ovulação
9.
Cancer Gene Ther ; 29(5): 402-417, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859378

RESUMO

Understanding the molecular basis of disease and the design of rationally designed molecular therapies has been the holy grail in the management of human cancers. Gene-based therapies are an important avenue for achieving a possible cure. Focused research in the last three decades has provided significant clues to optimize the potential of cancer gene therapy. The development of gene therapies with a high potential to kill the target cells at the lowest effective dose possible, the development of vectors with significant ability to target cancer-associated antigen, the application of adjunct therapies to target dysregulated microRNA, and embracing a hybrid strategy with a combination of gene therapy and low-dose chemotherapy in a disease-specific manner will be pivotal. This article outlines the advances and challenges in the field with emphasis on the biology and scope of vectors used for gene transfer, newer targets identified, and their outcome in preclinical and clinical studies.


Assuntos
Terapia Genética , Neoplasias , Terapia Combinada , Genes Neoplásicos , Vetores Genéticos/genética , Humanos , Neoplasias/genética , Neoplasias/terapia
10.
Mol Pharm ; 18(5): 2015-2031, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780253

RESUMO

Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.


Assuntos
Citarabina/administração & dosagem , Portadores de Fármacos/química , Leucemia Mieloide Aguda/tratamento farmacológico , Polímeros/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citarabina/farmacocinética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Leucemia Mieloide Aguda/patologia , Camundongos , Nanopartículas/química , Distribuição Tecidual
11.
Mol Pharm ; 17(10): 3649-3653, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32857512

RESUMO

Adeno-associated virus (AAV)-based gene therapy is currently limited by (1) decline in therapeutic gene expression over time, (2) immune cell activation and (3) neutralization by pre-existing antibodies. Hence, studying the interaction of AAV vectors with various cellular pathways during the production and transduction process is necessary to overcome such barriers. Post-translational modifications (PTM) of AAV vectors during the production and transduction process is known to limit its transduction efficiency and further evoke the immune response. Further, AAV vectors are known to trigger cellular stress, resulting in an upregulation of distinct arms of the unfolded protein response (UPR) pathway. Recognition of the AAV genome by Toll-like receptor-9 triggers the myeloid differentiation primary response signaling cascade for innate (IL-6, IFN-α, IFN-ß) and adaptive (CD8+ T-cell, B-cell) immune response against the viral capsid and the transgene product. Herein, we highlight a potential intersection of the UPR, PTMs, and intracellular trafficking pathways, which could be fine-tuned to augment the outcome of AAV-based gene delivery.


Assuntos
Dependovirus/imunologia , Terapia Genética/métodos , Interações entre Hospedeiro e Microrganismos/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Transdução Genética/métodos , Imunidade Adaptativa/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Dependovirus/genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Imunidade Inata/genética , Processamento de Proteína Pós-Traducional/genética , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/imunologia
12.
Virus Res ; 283: 197966, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32302639

RESUMO

Exosome associated Adeno-associated virus (AAV) vectors have emerged as a promising tool in gene therapy. Recently, we elucidated the role of SUMOylation post-translational modification in AAV2 capsid and demonstrated that capsid modifications at SUMOylation sites, enhance vector transduction. The present study was designed to study the combinatorial effect of exosome delivery of a SUMOylation site modified AAV2, during ocular gene therapy. In the first set of experiments, we investigated the in vitro gene transfer potential of exosome-associated SUMOylation mutant AAV2 (Exo-K105Q-EGFP) in human retinal pigmental epithelial (ARPE19) cells. Our data showed that, Exo-K105Q vectors had a significantly higher transduction potential in ARPE19 cells when compared to exosomes derived from wildtype AAV2 (Exo-AAV2-EGFP) vector packaging. Subsequently, an intravitreal administration of exosome associated mutant AAV2 vectors in C57BL6/J mice, demonstrated a significant increase reporter gene (EFGP) expression 4 weeks after gene transfer. Further immunostaining, revealed that these exosome-based vectors also had a better permeation across the retinal layers. These data highlight the translational potential of exosome associated SUMOylation mutant AAV for ocular gene therapy.


Assuntos
Proteínas do Capsídeo/genética , Dependovirus/genética , Exossomos/genética , Exossomos/metabolismo , Retina/metabolismo , Sumoilação/genética , Transdução Genética , Animais , Linhagem Celular Tumoral , Olho , Expressão Gênica , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Retina/citologia
13.
Mol Ther Methods Clin Dev ; 17: 497-504, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32258213

RESUMO

During recombinant Adeno-associated virus (AAV) production, a proportionately large amount of vectors is released in the culture supernatant, which is often discarded. It has been shown that these vectors often associate with vesiculated structures, such as exosomes. Exosome-associated AAV (vexosomes) represent an additional gene-delivery platform. The efficiency of such vexosomes in suicide gene therapy is unexplored. In the present study, we have generated AAV serotype 6 vexosomes containing an inducible caspase 9 (iCasp9) suicide gene by a differential ultracentrifugation-based protocol. We further tested the cytotoxic potential of these vexosomes in a human hepatocellular carcinoma (HCC) model in vitro and in vivo. The AAV6-iCasp9 containing vexosomes, when primed with a pro-drug (AP20187), demonstrated a significant loss in cell viability (57% ± 8% versus 100% ± 4.8%, p < 0.001) in comparison to mock-treated Huh7 cells. An intratumoral administration of AAV6-iCasp9 vexosomes and AP20187 in a murine xenograft model revealed a 2.3-fold increase in tumor regression in comparison to untreated animals. These findings were further corroborated by histological analysis and apoptosis assays. In conclusion, our data demonstrate the therapeutic potential of AAV6 vexosomes in a xenotransplantation model of HCC. Furthermore, the simplicity in production and isolation of vexosomes should further facilitate its application in other malignancies.

15.
Cancer Med ; 9(9): 3188-3201, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32108448

RESUMO

Recent success in clinical trials with recombinant Adeno-associated virus (AAV)-based gene therapy has redirected efforts in optimizing AAV assembly and production, to improve its potency. We reasoned that inclusion of a small RNA during vector assembly, which specifically alters the phosphorylation status of the packaging cells may be beneficial. We thus employed microRNAs (miR-431, miR-636) identified by their ability to bind AAV genome and also dysregulate Mitogen-activated protein kinase (MAPK) signaling during vector production, by a global transcriptome study in producer cells. A modified vector assembly protocol incorporating a plasmid encoding these microRNAs was developed. AAV2 vectors packaged in the presence of microRNA demonstrated an improved gene transfer potency by 3.7-fold, in vitro. Furthermore, AAV6 serotype vectors encoding an inducible caspase 9 suicide gene, packaged in the presence of miR-636, showed a significant tumor regression (~2.2-fold, P < .01) in a syngeneic murine model of T-cell lymphoma. Taken together, we have demonstrated a simple but effective microRNA-based approach to improve the assembly and potency of suicide gene therapy with AAV vectors.


Assuntos
Caspase 9/genética , Dependovirus/genética , Genes Transgênicos Suicidas , Terapia Genética , Vetores Genéticos/administração & dosagem , Linfoma/terapia , MicroRNAs/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Linfoma/genética , Transdução Genética , Células Tumorais Cultivadas
16.
Gene ; 724: 144157, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629820

RESUMO

Cellular microRNAs are known to modulate the life-cycle of different viruses. Surprisingly, very little data exists on AAV-induced changes to the cellular microRNAome in general and in hepatic and retinal cells, in particular. We reasoned that inducible microRNA in response to recombinant AAV infection may regulate immediate and long-lived cellular responses necessary for the cell's own survival as well as its ability to control several aspects of viral life-cycle. To study this, we performed a global small RNA sequencing analysis in Adeno-associated virus (AAV) serotypes 2 and 3 infected hepatic and retinal cell models. This screen identified multiple differentially expressed microRNAs, in AAV infected Huh-7 and ARPE-19 cells. Among these, one microRNA (miR-4488) was found to be significantly down regulated (-2.24 fold for AAV2 and -3.32 fold for ARPE-19) in AAV infected cells. An enrichment and pathway analysis of miR-4488 predicted its possible effects on gene targets involved in multiple biological processes including cell-cycle regulation, endoplasmic reticulum stress response and lipid-signalling pathways. Moreover, validation studies in miR-4488 mimic or sponge transfected cells revealed modulation of these target pathways in a cell-specific manner. Further studies demonstrated that overexpression of miR-4488, modestly increased gene expression (126-128%) from AAV2 and AAV3 vectors in Huh-7 cells whereas miR-4488 inhibition in ARPE-19 cells had a similar increase (142-158%) on AAV2 or AAV3 transduction. Our results highlight that recombinant AAV mediated microRNA expression is cell-type and serotype-specific and can target specific host cellular biological pathways.


Assuntos
Dependovirus/genética , MicroRNAs/genética , Infecções por Parvoviridae/genética , Epitélio Pigmentado da Retina/virologia , Transdução Genética/métodos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Parvovirinae/genética , Reprodutibilidade dos Testes , Epitélio Pigmentado da Retina/citologia , Transgenes
17.
Mol Pharm ; 16(11): 4738-4750, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31596095

RESUMO

Recombinant adeno-associated virus (AAV)-based gene therapy has been promising, but several host-related transduction or immune challenges remain. For this mode of therapy to be widely applicable, it is crucial to develop high transduction and permeating vectors that infect the target at significantly low doses. Because glycosylation of capsid proteins is known to be rate limiting in the life cycle of many viruses, we reasoned that perturbation of glycosylation sites in AAV2 capsid will enhance gene delivery. In our first set experiments, pharmacological modulation of the glycosylation status in host cells, modestly decreased (1-fold) AAV2 packaging efficacy while it improved their gene expression (∼74%) in vitro. We then generated 24 mutant AAV2 vectors modified to potentially create or disrupt a glycosylation site in its capsid. Three of them demonstrated a 1.3-2.5-fold increase in transgene expression in multiple cell lines (HeLa, Huh7, and ARPE-19). Hepatic gene transfer of these vectors in hemophilia B mice, resulted in a 2-fold increase in human coagulation factor (F)IX levels, while its T/B-cell immunogenic response was unaltered. Subsequently, intravitreal gene transfer of glycosylation site-modified vectors in C57BL6/J mice demonstrated an increase in green fluorescence protein expression (∼2- to 4-fold) and enhanced permeation across retina. Subretinal administration of these modified vectors containing RPE65 gene further rescued the photoreceptor response in a murine model of Leber congenital amarousis. Our studies highlight the translational potential of glycosylation site-modified AAV2 vectors for hepatic and ocular gene therapy applications.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Dependovirus/genética , Hemofilia A/genética , Degeneração Retiniana/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Células HeLa , Hemofilia A/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Degeneração Retiniana/metabolismo , Transdução Genética/métodos , Transgenes/genética
18.
Hum Gene Ther ; 30(12): 1461-1476, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31642343

RESUMO

Synthetic engineering of viral vectors such as adeno-associated virus (AAV) is crucial to overcome host transduction barriers observed during clinical gene therapy. We reasoned that exploring the role of cellular ubiquitin-like modifiers (UBLs) such as Neddylation or SUMOylation during AAV transduction could be beneficial. Using a combination of in silico biochemical and molecular engineering strategies, we have studied the impact of these UBLs during AAV2 infection and further developed Neddylation or SUMOylation site-modified AAV vectors and validated them in multiple disease models in vitro and in vivo. Hepatic gene transfer of two novel vectors developed, K105Q (SUMOylation-site mutant) and K665Q (Neddylation-site mutant), demonstrated a significantly improved human coagulation factor (F) IX expression (up to two-fold) in a murine model of hemophilia B. Furthermore, subretinal gene transfer of AAV2-K105Q vector expressing RPE65 gene demonstrated visual correction in a murine model of a retinal degenerative disease (rd12 mice). These vectors did not have any adverse immunogenic events in vivo. Taken together, we demonstrate that gene delivery vectors specifically engineered at UBLs can improve the therapeutic outcome during AAV-mediated ocular or hepatic gene therapy.


Assuntos
Terapia Genética , Hemofilia B/terapia , Amaurose Congênita de Leber/terapia , Sumoilação/genética , Animais , Fatores de Coagulação Sanguínea/genética , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Hemofilia B/genética , Humanos , Amaurose Congênita de Leber/genética , Camundongos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia
19.
Bioconjug Chem ; 30(9): 2404-2416, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31436412

RESUMO

Current chemotherapeutic regimens for acute myeloid leukemia (AML) have been modestly effective in patients and are associated with poor long-term survival (<30% at 5 years). Viral vector-based suicide gene therapy is an attractive option, if these vectors can target the AML cells with high specificity and efficiency. In this study, we have developed a receptor-specific adeno-associated virus (AAV) based vector to target the CD33 antigen which is overexpressed in leukemic cells. A targeting peptide was rationally designed from the antigen-binding regions of a CD33 monoclonal antibody. This peptide was further expressed on the capsid of the AAV6 vector, since this serotype was most efficient among AAV1-rh10 vectors to infect the pro-monocytic, human myeloid leukemia cells (U937). AAV6-CD33 vectors expressing a suicide gene, the inducible caspase 9 (iCasp9), and its prodrug AP20187 significantly reduced (∼59%) the viability of U937 cells. To further test its efficacy and specificity in vivo, AAV6-CD33 vectors were administered into a xenotransplantation model of AML in zebrafish through systemic delivery. We observed a significant antileukemic effect with AAV6-CD33 vectors, with a markedly higher survival (100% for AAV6-CD33 vectors vs 15% for mock-treated) and a higher number of TUNEL positive apoptotic cells after systemic vector delivery. Taken together, our work demonstrates the efficacy and translational potential of CD33-targeted AAV6 vectors for cytotoxic gene therapy in AML.


Assuntos
Caspase 9/genética , Dependovirus/genética , Genes Transgênicos Suicidas/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Leucemia Mieloide Aguda/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Expressão Gênica , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Peixe-Zebra
20.
Virus Res ; 272: 197716, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31419451

RESUMO

Despite the many advantages with Adeno-associated virus (AAV) based vectors for gene therapy, certain barriers related to host permissivity and immune response precludes their widespread application in humans. A comprehensive study of the distribution and complexity of naturally occurring AAV in human tissues should facilitate their optimal utilization for gene therapy and tissue targeting in humans. A total of 205 samples, comprising 198 tissue samples from individuals of Indian origin and 7 different cell lines were investigated. A panel of 8 primate samples was used as controls. DNA from these samples was screened for the AAV capsid specific signature regions by a modified PCR and DNA sequencing approach. Further, we generated a single point mutation (S224A) in AAV3 vector, analogous to the mutation identified in a novel AAV3 sequence variant isolated from a peripheral blood stem cell (PBSC) sample. We further studied the infectivity of these vectors in HeLa and HS5 cells in vitro. Of the 205 samples analyzed, an AAV specific signature DNA sequence was detected in 92 samples (45%), including 85 out of 198 human tissues and in all the 7 human cell lines investigated. DNA sequencing analysis showed that AAV6(34%) was the most common serotype and identified predominantly in PBSCs. Interestingly, a comparative genotypic analysis in primate samples identified AAV3 specific DNA in most of the bone marrow or liver tissue analyzed (n = 7/8) suggesting species-specific differences in AAV infectivity. Further characterization of an AAV3 serotype variant isolated from the PBSCs was non-infectious in vitro, possibly due to altered receptor affinity. Our data outlines the genetic diversity and the distribution of AAV serotypes infecting humans and provides a basis for their further characterization to generate efficient gene delivery vectors.


Assuntos
Dependovirus/genética , Variação Genética , Infecções por Parvoviridae/virologia , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , DNA Viral , Citometria de Fluxo , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Genoma Viral , Genótipo , Humanos , Mutação , Fases de Leitura Aberta , Especificidade de Órgãos , Análise de Sequência de DNA , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA