Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(37): 41851-41860, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36094823

RESUMO

Hematite is a classical photoanode material for photoelectrochemical water splitting due to its stability, performance, and low cost. However, the effect of particle size is still a question due to the charge transfer to the electrodes. In this work, we addressed this subject by the fabrication of a photoelectrode with hematite nanoparticles embedded in close contact with the electrode substrate. The nanoparticles were synthesized by a solvothermal method and colloidal stabilization with charged hydroxide molecules, and we were able to further use them to prepare electrodes for water photo-oxidation. Hematite nanoparticles were embedded within electrospun tin-doped indium oxide nanofibers. The fibrous layer acted as a current collector scaffold for the nanoparticles, supporting the effective transport of charge carriers. This method allows better contact of the nanoparticles with the substrate, and also, the fibrous scaffold increases the optical density of the photoelectrode. Electrodes based on nanofibers with embedded nanoparticles display significantly enhanced photoelectrochemical performance compared to their flat nanoparticle-based layer counterparts. This nanofiber architecture increases the photocurrent density and photon-to-current internal conversion efficiency by factors of 2 and 10, respectively.

2.
ACS Appl Mater Interfaces ; 12(25): 28120-28128, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32436690

RESUMO

The extent of confinement of soluble metal polysulfides inside a sulfur cathode strongly determines the performance of metal-sulfur rechargeable batteries. This challenge has been largely tackled by loading sulfur inside various conducting porous scaffolds. However, this approach has not proven to be fully effective because of poor chemical interaction between the scaffold and polysulfides. Here, we demonstrate an excellent strategy of using a sulfide additive in the sulfur cathode, viz., cobalt nickel sulfide (CoNi2S4), to efficiently trap the soluble polysulfides inside the sulfur cathode. In situ Raman and ex situ UV-vis spectroscopies clearly reveal higher retention of polysulfides inside CoNi2S4/S compared to bare sulfur and carbon-sulfur mixture cathodes. Against sodium, the CoNi2S4/S assembly showed remarkable cyclability both as a function of current density (at room temperature) and temperature (at constant current density). The versatility of CoNi2S4 is further proven by the exemplary cyclability at various current densities at room temperature against lithium.

3.
ACS Appl Mater Interfaces ; 7(30): 16266-78, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26176935

RESUMO

In this study, a minimum reflection loss of -70 dB was achieved for a 6 mm thick shield (at 17.1 GHz frequency) employing a unique approach. This was accomplished by engineering nanostructures through decoration of magnetic nanoparticles (nickel, Ni) onto graphene oxide (GO) sheets. Enhanced electromagnetic (EM) shielding was derived by selectively localizing the nanoscopic particles in a specific phase of polyethylene (PE)/poly(ethylene oxide) (PEO) blends. By introduction of a conducting inclusion (like multiwall carbon nanotubes, MWNTs) together with the engineered nanostructures (nickel-decorated GO, GO-Ni), the shielding efficiency can be enhanced significantly in contrast to physically mixing the particles in the blends. For instance, the composites showed a shielding efficiency >25 dB for a combination of MWNTs (3 wt %) and Ni nanoparticles (52 wt %) in PE/PEO blends. However, similar shielding effectiveness could be achieved for a combination of MWNTs (3 wt %) and 10 vol % of GO-Ni where in the effective concentration of Ni was only 19 wt %. The GO-Ni sheets facilitated in an efficient charge transfer as manifested from high electrical conductivity in the blends besides enhancing the permeability in the blends. It is envisioned that GO is simultaneously reduced in the process of synthesizing GO-Ni, and this facilitated in efficient charge transfer between the neighboring CNTs. More interestingly, the blends with MWNTs/GO-Ni attenuated the incoming EM radiation mostly by absorption. This study opens new avenues in designing polyolefin-based lightweight shielding materials by engineering nanostructures for numerous applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA