Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 71(5): 989-1011, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192689

RESUMO

Finding therapies that can protect and expand functional ß-cell mass is a major goal of diabetes research. Here, we generated ß-cell-specific conditional knockout and gain-of-function mouse models and used human islet transplant experiments to examine how manipulating Nrf2 levels affects ß-cell survival, proliferation, and mass. Depletion of Nrf2 in ß-cells results in decreased glucose-stimulated ß-cell proliferation ex vivo and decreased adaptive ß-cell proliferation and ß-cell mass expansion after a high-fat diet in vivo. Nrf2 protects ß-cells from apoptosis after a high-fat diet. Nrf2 loss of function decreases Pdx1 abundance and insulin content. Activating Nrf2 in a ß-cell-specific manner increases ß-cell proliferation and mass and improves glucose tolerance. Human islets transplanted under the kidney capsule of immunocompromised mice and treated systemically with bardoxolone methyl, an Nrf2 activator, display increased ß-cell proliferation. Thus, by managing reactive oxygen species levels, Nrf2 regulates ß-cell mass and is an exciting therapeutic target for expanding and protecting ß-cell mass in diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Animais , Apoptose , Proliferação de Células , Glucose , Insulina , Camundongos , Fator 2 Relacionado a NF-E2/genética , Ácido Oleanólico/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA