Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(9): 2284-2296, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966183

RESUMO

Spatial and temporal variations of the water table could be explained by the one-dimensional Boussinesq equation by incorporating the variables of evapotranspiration and groundwater recharge with appropriate initial and boundary conditions. In this study, the stream-aquifer interaction has been investigated through a numerical example model with the implementations of Galerkin's method-based Finite Element Solution (FES), Hybrid Finite Analytic Solution (HFAS), Fully Implicit Finite Difference Solution (FIFDS) of one-dimensional nonlinear Boussinesq equation, and analytical solutions of the Boussinesq equation linearized by Baumann's transformation (AS I) as well as linearized by Werner's transformation (AS II). Considering HFAS as the benchmark solution, it was observed that in both recharging and discharging aquifers, water table profiles at 1 day and 5 days as obtained from FES followed by FIFDS were observed quite close to HFAS. Based on L2 and Tchebycheff norms, FES and FIFDS were ranked in first and second place, respectively. L2 and Tchebycheff norms could not consistently establish the performance ranking of analytical solutions but their performance ranking was certainly below the numerical solutions. The performance ranking of analytical solutions could not consistently be established using the L2 and Tchebycheff norms, but it was certainly below the numerical solutions.


Assuntos
Água Subterrânea , Rios , Movimentos da Água , Modelos Teóricos , Benchmarking
2.
Ground Water ; 57(5): 749-755, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30740694

RESUMO

Rainfall is the major source for groundwater recharge in basins areas of central region of India. Now a day, the river basins are experiencing acute shortage of water which has resulted in lowering of groundwater level and drying up of water bodies. In order to maintain water sustainability; a composite hydrologic index was developed in the Betwa basin of Madhya Pradesh and Uttar Pradesh states, India. The index was developed using principal component analysis through hydrologic, topographic as well as geographic parameters derived from the Soil and Water Assessment Tool and MODFLOW model. The geomorphological parameters were categorized, on the basis of groundwater recharge potential and weight ranged from 1 to 4. The geomorphologic parameters, that is, soil type (T), slope (S), runoff ratio (R), and evapotranspiration (ET) were integrated into a single indicator of composite hydrologic index. Soil type and ET were the major factors that directly affected the groundwater recharge. These two parameters together explained 86% of total variability in the data. Based on the analysis of the four parameters that affected groundwater recharge, composite hydrologic index (CHI) was classified into very good, good, moderate, and low grade. The CHI was statistically validated using standardization methods. The index was developed as a water management tool to measure a sustainability state relative to a groundwater recharge potential, which allows for spatial and temporal comparison. This index will be helpful in natural resource management and will improve socioeconomic status of human population inhibiting in the semi-arid region.


Assuntos
Água Subterrânea , Monitoramento Ambiental , Humanos , Hidrologia , Índia , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA