Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 49(24): 11595-605, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21082792

RESUMO

The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

2.
Org Biomol Chem ; 7(13): 2704-15, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19532986

RESUMO

The design of polymers with repeating [C(NR2)2CH2CH2] units which may simultaneously provide conformational control and contain repeating electroactive centres is discussed; (NR2)2 groups would be ideally provided by ortho-phenylenediamine derivatives, with 1,8-diaminonaphthalenes as alternatives. Oligomers containing 1,8-bis(methylamino)naphthalenes, up to the hexamer, were obtained by condensation of oligomers of CH3[COCH2CH2](n)COCH3 with 1,8-bis(methylamino)naphthalene, but attempts to prepare related oligomers from 1,2-bis(alkylamino)benzenes were unsuccessful, as only terminal ketone groups could be converted to aminals. Evidence for a strong preference for all-anti conformations of the main chain in the naphthalenediamine oligomers is provided by ring current effects on 1H NMR shifts, and by X-ray structures, which also provide evidence of intercalation in the solid state. Electrochemical studies of these oligomers show irreversible oxidation of oligomers in solution, but oxidation of longer oligomers leads to the deposition of a reddish-pink insoluble material which shows two reversible oxidation waves. Possible interpretation of these results is discussed.


Assuntos
Naftalenos/química , Fenilenodiaminas/química , Polímeros/química , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Naftalenos/síntese química , Fenilenodiaminas/síntese química , Polímeros/síntese química
3.
Chem Commun (Camb) ; (1): 108-10, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18399416

RESUMO

The reaction of a potentially tetradentate bis(pyridyl-thiazole) ligand with acetone is allosterically activated upon complexation with Cd(II) but deactivated by reaction with Cu(I), demonstrating metal-specific allosteric controlled reactivity.

4.
Chemistry ; 13(24): 6967-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17541996

RESUMO

Abstraction of a Cl(-) ion from the P-chlorophospholes, R4C4PCl (R=Me, Et), produced the P--P bonded cations [R4C4P--P(Cl)C4R4]+, which reacted with PPh3 to afford X-ray crystallographically characterised phosphine-phosphenium cations [R4C4P(PPh3)]+ (R=Me, Et). Examination of the 31P-{1H} NMR spectrum of a solution (CH2Cl(2)) of [Et4C4P-(PPh3)]+ and PPh3 revealed broadening of the resonances due to both free and coordinated PPh3, and importantly it proved possible to measure the rate of exchange between PPh3 and [Et4C4P-(PPh3)]+ by line shape analysis (gNMR programmes). The results established second-order kinetics with DeltaS( not equal)=(-106.3+/-6.7) J mol(-1) K(-1), DeltaH( not equal)=(14.9+/-1.6) kJ mol(-1) and DeltaG( not equal) (298.15 K)=(46.6+/-2.6) kJ mol(-1), values consistent with a SN2-type pathway for the exchange process. This result contrasts with the dominant dissociative (S(N)1-type) pathway reported for the analogous exchange reactions of the [ArNCH2CH2N(Ar)P(PMe3)]+ ion, and to understand in more detail the factors controlling these two different reaction pathways, we have analysed the potential energy surfaces using density functional theory (DFT). The calculations reveal that, whilst phosphine exchange in [Et4C4P(PPh3)]+ and [ArNCH2CH2N(Ar)P(PMe3)](+) is superficially similar, the two cations differ significantly in both their electronic and steric requirements. The high electrophilicity of the phosphorus center in [Et4C4P]+, combined with strong pi-pi interactions between the ring and the incoming and outgoing phenyl groups of PPh3, favours the SN2-type over the SN1-type pathway in [Et4C4P(PPh3)]+. Effective pi-donation from the amide groups reduces the intrinsic electrophilicity of [ArNCH2CH2N(Ar)P]+, which, when combined with the steric bulk of the aryl groups, shifts the mechanism in favour of a dissociative SN1-type pathway.

5.
Dalton Trans ; (15): 1492-9, 2007 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-17404650

RESUMO

The luminescent transition metal complexes [Re(CO)(3)Cl(bppz)] and [Pt(CC-C(6)H(4)CF(3))(2)(bppz)] [bppz = 2,3-bis(2-pyridyl)pyrazine], in which one of the diimine binding sites of the potentially bridging ligand bppz is vacant, have been used as 'complex ligands' to make heterodinuclear d-f complexes by attachment of a {Ln(dik)(3)} fragment (dik = a 1,3-diketonate) at the vacant site. When Ln = Pr, Nd, Er or Yb the lanthanide centre has low-energy f-f excited states capable of accepting energy from the (3)MLCT excited state of the Pt(II) or Re(I) centre, quenching the (3)MLCT luminescence and affording sensitised lanthanide(III)-based luminescence in the near-IR region. UV/Vis and luminescence spectroscopic titrations allowed measurement of (i) the association constants for binding of the {Ln(dik)(3)} fragment at the vacant diimine site of [Re(CO)(3)Cl(bppz)] or [Pt(CC-C(6)H(4)CF(3))(2)(bppz)], and (ii) the degree of quenching of the (3)MLCT luminescence according to the nature of the Ln(III) centre. In all cases Nd(III) was found to be the most effective of the series at quenching the (3)MLCT luminescence of the d-block component because the high density of f-f excited states of the appropriate energy make it a particularly effective energy-acceptor.

6.
Dalton Trans ; (16): 1577-87, 2007 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-17426859

RESUMO

Two multidentate ditopic ligands L1 and L2 which contain both N-donor and crown ether units have been synthesised. The potentially octadentate ligand L1 forms a trinuclear heterometallic double helicate with Cu(I) and Zn(II) ([Zn2Cu(L1)2](5+)), whereas L2 forms a tetranuclear heterometallic double helicate with the same metal ions ([Zn2Cu2(L2)2](6+)). Both species have been characterised by (1)H NMR, ESI-MS and single crystal X-ray crystallography. Reaction of [Zn2Cu2(L2)2](6+) with Ba(2+) results in the coordination of the crown ether units giving the simple barium coordinated species [Zn2Cu2(L2)2Ba2](10+). However, reaction of [Zn2Cu(L1)2](5+) with Ba(2+) deprograms the ligand and results in the formation of a mixture of species.

7.
Chemistry ; 13(18): 5256-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17431869

RESUMO

The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.

8.
Inorg Chem ; 46(7): 2417-26, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-17326619

RESUMO

The coordination chemistry of the tetradentate pyridyl-thiazole (py-tz) N-donor ligand 6,6'-bis(4-phenylthiazol-2-yl)-2,2'-bipyridine (L1) has been investigated. Reaction of L1 with equimolar copper(II) ions results in the formation of the single-stranded mononuclear complex [Cu(L1)(ClO4)2] (1), whereas reaction with copper(I) ions results in the double-stranded dinuclear helicate [Cu2(L1)2][PF6]2 (2). Both complexes were characterized by X-ray crystallography, UV-vis spectroscopy, and electrospray ionization mass spectroscopy (as well as 1H NMR spectroscopy for diamagnetic 2). Complex 2 is redox-active and, upon one-electron oxidation, forms the stable tricationic mixed-valence helicate [Cu2(L1)2]3+ (3). This species can also be prepared in situ by combining [Cu(MeCN)4][BF4], [Cu(H2O)6][BF4]2, and L1 in a 1:1:2 ratio in nitromethane. X-ray crystallographic analysis of 3 provides structural evidence for the presence of an internuclear Cu-Cu bond, with an even distribution of spin density across the two Cu centers. Room-temperature UV-vis spectroscopy is consistent with this finding; however, frozen-glass EPR spectroscopic investigations suggest solvatochromic behavior at 110 K, with the [Cu2]3+ core varying from localized to delocalized depending on the solvent polarity.


Assuntos
Cobre/química , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular
9.
Dalton Trans ; (42): 4996-5013, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17060986

RESUMO

The coordination chemistry of a series of di- and tri-nucleating ligands with Ag(I), Hg(I) and Hg(II) has been investigated. Most of the ligands contain two or three N,N'-bidentate chelating pyrazolyl-pyridine units pendant from a central aromatic spacer; one contains three binding sites (2 + 3 + 2-dentate) in a linear sequence. A series of thirteen complexes has been structurally characterised displaying a wide range of structural types. Bis-bidentate bridging ligands react with Ag(I) to give complexes in which Ag(I) is four-coordinate from two bidentate donors, but the complexes can take the form of one-dimensional coordination polymers, or dinuclear complexes (mesocate or helicate). A tris-bidentate triangular ligand forms a complicated two-dimensional coordination network with Ag(I) in which Ag...Ag contacts, as well as metal-ligand coordination bonds, play a significant role. Three dinuclear Hg(I) complexes were isolated which contain an {Hg2}2+ metal-metal bonded core bound to a single bis-bidentate ligand which can span both metal ions. Also characterised were a series of Hg(II) complexes comprising a simple mononuclear four-coordinate Hg(II) complex, a tetrahedral Hg(II)4 cage which incorporates a counter-ion in its central cavity, a trinuclear double helicate, and a trinuclear catenated structure in which two long ligands have spontaneously formed interlocked metallomacrocyclic rings thanks to cyclometallation of two of the Hg(II) centres.

11.
Chem Commun (Camb) ; (18): 1980-2, 2006 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-16767256

RESUMO

The ligand L1 forms a dinuclear double helicate with Cu+ but upon addition of Ba2+ to the system a side-by-side species is formed both in solution and in the solid state; in the presence of Na+ both the helicate and the side-by-side species are formed in roughly equal amounts in solution.

12.
Inorg Chem ; 45(10): 3905-19, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16676949

RESUMO

The tetradentate ligand L(naph) contains two N-donor bidentate pyrazolyl-pyridine units connected to a 1,8-naphthyl core via methylene spacers; L45 and L56 are chiral ligands with a structure similar to that of L(naph) but bearing pinene groups fused to either C4 and C5 or C5 and C6 of the terminal pyridyl rings. The complexes [Cu(L(naph))](OTf) and [Ag(L(naph))](BF4) have unremarkable mononuclear structures, with Cu(I) being four-coordinate and Ag(I) being two-coordinate with two additional weak interactions (i.e., "2 + 2" coordinate). In contrast, [Cu4(L(naph))4][BF4]4 is a cyclic tetranuclear helicate with a tetrafluoroborate anion in the central cavity, formed by an anion-templating effect; electrospray mass spectrometry (ESMS) spectra show the presence of other cyclic oligomers in solution. The chiral ligands show comparable behavior, with [Cu(L45)](BF4) and [Ag(L45)](ClO4) having similar mononuclear crystal structures and with the ligands being tetradentate chelates. In contrast, [Ag4(L56)4](BF4)4 is a cyclic tetranuclear helicate in which both diastereomers of the complex are present in the crystal; the two diastereomers have similar gross geometries but are significantly different in detail. Despite their different crystal structures, [Ag(L45)](ClO4) and [Ag4(L56)4](BF4)4 behave similarly in solution according to ESMS studies, with a range of cyclic oligomers (up to Ag9L9) forming. With transition-metal dications Co(II), Cu(II), and Cd(II), L(naph) generates a series of unusual dodecanuclear coordination cages [M12(L(naph))18]X24 (X- = ClO4- or BF4-) in which the 12 metal ions occupy the vertices of a truncated tetrahedron and a bridging ligand spans each of the 18 edges. The central cavity of each cage can accommodate four counterions, and each cage molecule is chiral, with all 12 metal trischelates being homochiral; the crystals are racemic. Extensive aromatic stacking between ligands around the periphery of the cages appears to be a significant factor in their assembly. The chiral analogue L45 forms the simpler tetranuclear, tetrahedral coordination cage [Zn4(L45)6](ClO4)(8), with one anion in the central cavity; the steric bulk of the pinene chiral auxiliaries prevents the formation of a dodecanuclear cage, although trace amounts of [Zn12(L45)18](ClO4)24 can be detected in solution by ESMS. Formation of [Zn4(L45)6](ClO4)8 is diastereoselective, with the chirality of the pinene groups controlling the chirality of the tetranuclear cage.


Assuntos
Compostos Organometálicos/química , Pirazóis/química , Piridinas/química , Boratos/química , Cobre/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Prata/química
13.
Chem Commun (Camb) ; (13): 1375-7, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16550271

RESUMO

The cationic cages nido-[C2Bu(t)2P2E]+ (E = As, Sb), which are isolobal to the cyclopentadienyl cation, adopt square based pyramidal structures with the heavy pnictogen atom at the apex; NMR and computational methods have been used to probe the dynamic behaviour of the complexes.

14.
Dalton Trans ; (9): 1234-8, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16482362

RESUMO

Two rare examples of the crystal structures of large molecular clusters formed from the lithium salts of multianions are reported; the first is the dilithium salt of phenylhydrazine, which forms a tetrameric cage with a core of eight Li and eight N centres; the second is a 32-membered cage which forms from the aggregation of two [B(NNPh)3]6- hexaanions, two [NH-NPh]2- dianions and 16 Li+ cations.

15.
J Am Chem Soc ; 128(1): 72-3, 2006 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-16390127

RESUMO

Two new types of coordination cage have been prepared and structurally characterized: [M16(mu-L1)24]X32 are based on a tetra-capped truncated tetrahedral core and have a bridging ligand L1 along each of the 24 edges; [M12(mu-L1)12(mu3-L2)4]X24 are based on a cuboctahedral core which is supported by a combination of face-capping ligands L2 and edge-bridging ligands L1. The difference between the two illustrates how combinations of ligands with different coordination modes can generate coordination cages which are not available using one ligand type on its own.

16.
Chem Commun (Camb) ; (43): 4542-4, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17283812

RESUMO

Reactions of Cp*PCl2 with Group 13 reducing agents result in a cascade of P-C, P-P and C-C bond forming reactions and the stereoselective formation of P2C10 cages.

18.
J Am Chem Soc ; 127(43): 15012-3, 2005 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-16248625

RESUMO

The (H-DBU)+ salt of the anionic phosphinidene oxide complex [MoCp(CO)2{P(O)R*}]- (1) (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene; R* = 2,4,6-C6H2tBu3) reacts with different oxidizing agents, displaying a multisite activity located at the Mo and P atoms or at the Mo=P bond. Thus, reaction of 1 with [FeCp2]BF4 gives the dimer [Mo2Cp2(CO)4{P(O)R*}2], and reaction with bromine gives the phosphinous acid complex [MoBrCp{P(OH)(CH2CMe2C6H2tBu2}(CO)2], the latter arising from an unprecedented C-H bond addition to the oxide P=O moiety. In contrast, reaction of 1 with p-benzoquinone occurs at the P site to give the P,O-bound phosphonite complex [MoCp{kappa2-OP(OC6H4OH)R*}(CO)2]. Finally, oxygen or sulfur atoms are added to the Mo=P bond by reaction of 1 with Me2CO2 and S8 to give the novel dioxophosphorane or thiooxophosphorane complexes [MoCp(CO)2{kappa2-EP(O)R*}]- (E = O, S). The thiooxophosphorane anion is a good nucleophile and is methylated at either the S or O positions depending on the electrophile used (MeI or (Me3O)BF4) to give the isomers [MoCp{kappa2-(MeS)P(O)R*}(CO)2] and [MoCp{kappa2-SP(OMe)R*}(CO)2], both having novel organophosphorus ligands.

19.
Chem Commun (Camb) ; (37): 4647-9, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16175279

RESUMO

A chiral bridging ligand affords a single diastereoisomer of tetrahedral M4L6 cage complex in which the optical rotation of each ligand is increased by a factor of 5 on coordination.

20.
Chem Commun (Camb) ; (33): 4158-60, 2005 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16100588

RESUMO

Self assembly of the ditopic ligand L1 with Cu2+ gives the dinuclear double helicate [Cu2(L1)2]4+, which can further coordinate s-block cations. This coordination alters the helicate pitch to a variety of different lengths depending on the size and charge of the guest cation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA