Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 305(1): 81-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34369671

RESUMO

Covariations between anatomical structures are fundamental to craniofacial ontogeny, maturation, and aging and yet are rarely studied in such a cognate fashion. Here, we offer a comprehensive investigation of the human craniofacial complex using freely available software and MRI datasets representing 575 individuals from 0 to 79 years old. We employ both standard craniometrics methods as well as Procrustes-based analyses to capture and document cross-sectional trends. Findings suggest that anatomical structures behave primarily as modules, and manifest integrated patterns of shape change as they compete for space, particularly with relative expansions of the brain during early postnatal life and of the face during puberty. Sexual dimorphism was detected in infancy and intensified during adolescence with gender differences in the magnitude and pattern of morphological covariation as well as of aging. These findings partly support the spatial-packing hypothesis and reveal important insights into phenotypic adjustments to deep-rooted, and presumably genetically defined, trajectories of morphological size and shape change that characterize the normal human craniofacial life-course.


Assuntos
Envelhecimento , Crânio , Adolescente , Adulto , Idoso , Cefalometria , Criança , Pré-Escolar , Estudos Transversais , Face/anatomia & histologia , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Crânio/diagnóstico por imagem , Adulto Jovem
2.
J Anat ; 238(6): 1284-1295, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33438210

RESUMO

Networks linking single genes to multiple phenotypic outcomes can be founded on local anatomical interactions as well as on systemic factors like biochemical products. Here we explore the effects of such interactions by investigating the competing spatial demands of brain and masticatory muscle growth within the hypermuscular myostatin-deficient mouse model and in computational simulations. Mice that lacked both copies of the myostatin gene (-/-) and display gross hypermuscularity, and control mice that had both copies of the myostatin gene (+/+) were sampled at 1, 7, 14 and 28 postnatal days. A total of 48 mice were imaged with standard as well as contrast-enhanced microCT. Size metrics and landmark configurations were collected from the image data and were analysed alongside in silico models of tissue expansion. Findings revealed that: masseter muscle volume was smaller in -/- mice at day 1 but became, and remained thereafter, larger by 7 days; -/- endocranial volumes begin and remained smaller; -/- enlargement of the masticatory muscles was associated with caudolateral displacement of the calvarium, lateral displacement of the zygomatic arches, and slight dorsal deflection of the face and basicranium. Simulations revealed basicranial retroflexion (flattening) and dorsal deflection of the face associated with muscle expansion and abrogative covariations of basicranial flexion and ventral facial deflection associated with endocranial expansion. Our findings support the spatial-packing theory and highlight the importance of understanding the harmony of competing spatial demands that can shape and maintain mammalian skull architecture during ontogeny.


Assuntos
Face/anatomia & histologia , Músculos da Mastigação/anatomia & histologia , Crânio/anatomia & histologia , Animais , Cefalometria , Simulação por Computador , Camundongos , Miostatina/genética
3.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404779

RESUMO

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Assuntos
Curadoria de Dados/normas , Conjuntos de Dados como Assunto , Disciplinas das Ciências Biológicas/estatística & dados numéricos , Reprodutibilidade dos Testes , Pesquisa/normas
4.
J Anat ; 229(1): 104-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27075139

RESUMO

Sagittal fractures of the first phalanx are a common, potentially catastrophic injury in racehorses. These fractures are often linked to an acute, one time, biomechanical event; however, recent evidence implies that chronic exposure to stress can lead to the accumulation of bony changes that affect the structural integrity of the bone and increase the likelihood of fracture. The aim of the study was to compare variations of two common metrics of bone adaptation - subchondral bone density and thickness across the proximal articular surface of the first phalanx in Thoroughbred horses that (1) raced but never experienced a first phalanx fracture (Raced Control); (2) raced and had experienced fracture of the contralateral first phalanx (Contralateral to Fracture); (3) had never raced or experienced a first phalanx fracture (Unraced Control). A total of 22 first phalangeal bones were sampled post-mortem and imaged using micro-computed tomography calibrated for mineral density measures. Measurements of volumetric subchondral bone mineral density and thickness were taken from images at five sites from medial to lateral, in three coronal planes (25, 50 and 75% dorsal-palmar). At each of the 15 sites, measurements were repeated and averaged across 10 adjacent micro-computed tomography slices of bone, spanning 0.75 mm. The magnitude and variance of these measurements were compared between sites and between cohorts with non-parametric statistical tests. Across the proximal osteochondral surface of the first phalanx, the pattern of subchondral bone volumetric bone mineral density and thickness varied with each coronal section studied. The subchondral bone thickness was greater for the central and dorsal coronal sections, compared with the palmar section. For the race-fit groups (Raced Control and Contralateral to Fracture), the highest volumetric bone mineral density was in the central sagittal groove. The volumetric bone mineral density was significantly greater in the sagittal groove in the central coronal section in the raced than the unraced group. The Contralateral to Fracture group demonstrated significantly greater variance of volumetric bone mineral density compared with the Raced Control and Unraced Control (P < 0.0001), with no difference in variance noted between the Raced Control and Unraced Control groups. There was a small (R rank = 0.3) but significant correlation between subchondral bone volumetric bone mineral density and thickness in the Contralateral to Fracture group (P = 0.005). The findings demonstrate that differences exist in subchondral bone volumetric bone mineral density and thickness across the proximal osteochondral surface of the equine first phalanx in horses with different training histories. The findings also demonstrate that the subchondral bone of the sagittal groove of the equine first phalanx adapts to race-training in the race-fit groups (Raced Control and Contralateral to Fracture) with an increase in volumetric bone mineral density relative to unraced controls. Within the race-trained groups, the Contralateral to Fracture bones had a greater variance of volumetric bone mineral density, suggesting that stress-induced bone adaptation had become more erratic, potentially contributing to the aetiology of sagittal fractures of the first phalanx in the Thoroughbred racehorse.


Assuntos
Adaptação Fisiológica , Cavalos/anatomia & histologia , Condicionamento Físico Animal/fisiologia , Falanges dos Dedos do Pé/anatomia & histologia , Animais , Cavalos/fisiologia , Falanges dos Dedos do Pé/fisiologia
5.
J Anat ; 223(1): 46-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23692055

RESUMO

The mouse has been the dominant model organism in studies on the development, genetics and evolution of the mammalian skull and associated soft-tissue for decades. There is the potential to take advantage of this well studied model and the range of mutant, knockin and knockout organisms with diverse craniofacial phenotypes to investigate the functional significance of variation and the role of mechanical forces on the development of the integrated craniofacial skeleton and musculature by using computational mechanical modelling methods (e.g. finite element and multibody dynamic modelling). Currently, there are no detailed published data of the mouse masticatory musculature available. Here, using a combination of micro-dissection and non-invasive segmentation of iodine-enhanced micro-computed tomography, we document the anatomy, architecture and proportions of the mouse masticatory muscles. We report on the superficial masseter (muscle, tendon and pars reflecta), deep masseter, zygomaticomandibularis (anterior, posterior, infraorbital and tendinous parts), temporalis (lateral and medial parts), external and internal pterygoid muscles. Additionally, we report a lateral expansion of the attachment of the temporalis onto the zygomatic arch, which may play a role in stabilising this bone during downwards loading. The data presented in this paper now provide a detailed reference for phenotypic comparison in mouse models and allow the mouse to be used as a model organism in biomechanical and functional modelling and simulation studies of the craniofacial skeleton and particularly the masticatory system.


Assuntos
Músculos da Mastigação/anatomia & histologia , Animais , Camundongos , Modelos Anatômicos , Terminologia como Assunto , Tomografia Computadorizada por Raios X
6.
J Biomech ; 44(1): 189-92, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20846653

RESUMO

We illustrate here microCT images in which contrast between muscle and connective tissue has been achieved by means of staining with iodine. Enhancement is shown to be dependent on the concentration of iodine solution (I(2)KI), time in solution and specimen size. Histological examination confirms that the arrangement of individual muscle fibres can be visualised on the enhanced microCT images, and that the iodine accumulates in the muscle fibres in preference to the surrounding connective tissues. We explore the application of this technique to describe the fibrous structure of skeletal muscle, and conclude that it has the potential to become a non-destructive and cost-effective method for investigating muscle fascicle architecture, particularly in comparative morphological studies.


Assuntos
Modelos Anatômicos , Fibras Musculares Esqueléticas/diagnóstico por imagem , Animais , Fenômenos Biomecânicos , Imageamento Tridimensional , Iodo , Camundongos , Músculo Esquelético/anatomia & histologia , Sciuridae , Coloração e Rotulagem , Sus scrofa , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA