Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 201(4): 991-1003, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042994

RESUMO

Intraspecific phytochemical variation across a landscape can cascade up trophic levels, potentially mediating the composition of entire insect communities. Surprisingly, we have little understanding of the processes that regulate and maintain phytochemical variation within species, likely because these processes are complex and operate simultaneously both temporally and spatially. To assess how phytochemistry varies within species, we tested the degree to which resource availability, contrasting soil type, and herbivory generate intraspecific chemical variation in growth and defense of the tropical shrub, Piper imperiale (Piperaceae). We quantified changes in both growth (e.g., nutritional protein, above- and below-ground biomass) and defense (e.g., imide chemicals) of individual plants using a well-replicated fully factorial shade-house experiment in Costa Rica. We found that plants grown in high light, nutrient- and richer old alluvial soil had increased biomass. High light was also important for increasing foliar protein. Thus, investment into growth was determined by resource availability and soil composition. Surprisingly, we found that chemical defenses decreased in response to herbivory. We also found that changes in plant protein were more plastic compared to plant defense, indicating that constitutive defenses may be relatively fixed, and thus an adaptation to chronic herbivory that is common in tropical forests. We demonstrate that intraspecific phytochemical variation of P. imperiale is shaped by resource availability from light and soil type. Because environmental heterogeneity occurs over small spatial scales (tens of meters), herbivores may be faced with a complex phytochemical landscape that may regulate how much damage any individual plant sustains.


Assuntos
Florestas , Compostos Fitoquímicos , Compostos Fitoquímicos/metabolismo , Herbivoria , Plantas/metabolismo , Solo
2.
iScience ; 25(8): 104765, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35942103

RESUMO

Nectar chemistry can influence the behavior of pollinators in ways that affect pollen transfer, yet basic questions about how nectar chemical diversity impacts plant-pollinator relationships remain unexplored. For example, plants' capacity to produce neurotransmitters and endocrine disruptors may offer a means to manipulate pollinator behavior. We surveyed 15 plant species and discovered that two insect neurotransmitters, octopamine and tyramine, were widely distributed in floral nectar. We detected the highest concentration of these chemicals in Citrus, alongside the well-studied alkaloid caffeine. We explored the separate and interactive effects of these chemicals on insect pollinators in a series of behavioral experiments on bumblebees (Bombus impatiens). We found that octopamine and tyramine interacted with caffeine to alter key aspects of bee behavior relevant to plant fitness (sucrose responsiveness, long-term memory, and floral preferences). These results provide evidence for a means by which synergistic or antagonistic nectar chemistry might influence pollinators.

3.
Ecol Indic ; 135: 1-13, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35516524

RESUMO

The Biological Condition Gradient (BCG) is a conceptual model used to describe incremental changes in biological condition along a gradient of increasing anthropogenic stress. As coral reefs collapse globally, scientists and managers are focused on how to sustain the crucial structure and functions, and the benefits that healthy coral reef ecosystems provide for many economies and societies. We developed a numeric (quantitative) BGC model for the coral reefs of Puerto Rico and the US Virgin Islands to transparently facilitate ecologically meaningful management decisions regarding these fragile resources. Here, reef conditions range from natural, undisturbed conditions to severely altered or degraded conditions. Numeric decision rules were developed by an expert panel for scleractinian corals and other benthic assemblages using multiple attributes to apply in shallow-water tropical fore reefs with depths <30 m. The numeric model employed decision rules based on metrics (e.g., % live coral cover, coral species richness, pollution-sensitive coral species, unproductive and sediment substrates, % cover by Orbicella spp.) used to assess coral reef condition. Model confirmation showed the numeric BCG model predicted the panel's median site ratings for 84% of the sites used to calibrate the model and 89% of independent validation sites. The numeric BCG model is suitable for adaptive management applications and supports bioassessment and criteria development. It is a robust assessment tool that could be used to establish ecosystem condition that would aid resource managers in evaluating and communicating current or changing conditions, protect water and habitat quality in areas of high biological integrity, or develop restoration goals with stakeholders and other public beneficiaries.

4.
Ecology ; 103(9): e3762, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593436

RESUMO

Species richness in tropical forests is correlated with other dimensions of diversity, including the diversity of plant-herbivore interactions and the phytochemical diversity that influences those interactions. Understanding the complexity of plant chemistry and the importance of phytochemical diversity for plant-insect interactions and overall forest richness has been enhanced significantly by the application of metabolomics to natural systems. The present work used proton nuclear magnetic resonance spectroscopy (1 H-NMR) profiling of crude leaf extracts to study phytochemical similarity and diversity among Piper plants growing naturally in the Atlantic Rainforest of Brazil. Spectral profile similarity and chemical diversity were quantified to examine the relationship between metrics of phytochemical diversity, specialist and generalist herbivory, and understory plant richness. Herbivory increased with understory species richness, while generalist herbivory increased and specialist herbivory decreased with the diversity of Piper leaf material available. Specialist herbivory increased when conspecific host plants were more spectroscopically dissimilar. Spectral similarity was lower among individuals of common species, and they were also more spectrally diverse, indicating phytochemical diversity is beneficial to plants. Canopy openness and soil nutrients also influenced chemistry and herbivory. The complex relationships uncovered in this study add information to our growing understanding of the importance of phytochemical diversity for plant-insect interactions and tropical plant species richness.


Assuntos
Herbivoria , Piper , Animais , Biodiversidade , Ecologia , Florestas , Humanos , Insetos , Compostos Fitoquímicos , Plantas , Árvores
5.
Ecol Indic ; 138: 1-13, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36761828

RESUMO

As coral reef condition and sustainability continue to decline worldwide, losses of critical habitat and their ecosystem services have generated an urgency to understand and communicate reef response to management actions, environmental contamination, and natural disasters. Increasingly, coral reef protection and restoration programs emphasize the need for robust assessment tools for protecting high-quality waters and establishing conservation goals. Of equal importance is the need to communicate assessment results to stakeholders, beneficiaries, and the public so that environmental consequences of decisions are understood. The Biological Condition (BCG) model provides a structure to evaluate the condition of a coral reef in increments of change along a gradient of human disturbance. Communication of incremental change, regardless of direction, is important for decision makers and the public to better understand what is gained or lost depending on what actions are taken. We developed a narrative (qualitative) Biological Condition Gradient (BCG) from the consensus of a diverse expert panel to provide a framework for coral reefs in US Caribbean Territories. The model uses narrative descriptions of biological attributes for benthic organisms to evaluate reefs relative to undisturbed or minimally disturbed conditions. Using expert elicitation, narrative decision rules were proposed and deliberated to discriminate among six levels of change along a gradient of increasing anthropogenic stress. Narrative rules for each of the BCG levels are presented to facilitate the evaluation of benthic communities in coral reefs and provide specific narrative features to detect changes in coral reef condition and biological integrity. The BCG model can be used in the absence of numeric, or quantitative metrics, to evaluate actions that may encroach on coral reef ecosystems, manage endangered species habitat, and develop and implement management plans for marine protected areas, watersheds, and coastal zones. The narrative BCG model is a defensible model and communication tool that translates scientific results so the nontechnical person can understand and support both regulatory and non-regulatory water quality and natural resource programs.

6.
Sci Rep ; 11(1): 17247, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446754

RESUMO

Foundational hypotheses addressing plant-insect codiversification and plant defense theory typically assume a macroevolutionary pattern whereby closely related plants have similar chemical profiles. However, numerous studies have documented variation in the degree of phytochemical trait lability, raising the possibility that phytochemical evolution is more nuanced than initially assumed. We utilize proton nuclear magnetic resonance (1H NMR) data, chemical classification, and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade Radula (Piper; Piperaceae). Sequencing data substantially improved phylogenetic resolution relative to past studies, and spectroscopic characterization revealed the presence of 35 metabolite classes. Metabolite classes displayed phylogenetic signal, whereas the crude 1H NMR spectra featured little evidence of phylogenetic signal in multivariate tests of chemical resonances. Evolutionary correlations were detected in two pairs of compound classes (flavonoids with chalcones; p-alkenyl phenols with kavalactones), where the gain or loss of a class was dependent on the other's state. Overall, the evolution of secondary chemistry in Radula is characterized by strong phylogenetic signal of traditional compound classes and weak phylogenetic signal of specialized chemical motifs, consistent with both classic evolutionary hypotheses and recent examinations of phytochemical evolution in young lineages.

7.
J Anim Ecol ; 90(3): 628-640, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33241571

RESUMO

Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterflies Danaus plexippus, consistently experience infection by a virulent parasite Ophryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity. We investigated plant-mediated influences of elevated CO2 (eCO2 ) on endogenous immune responses of monarch larvae to infection by O. elektroscirrha. Recently, transcriptomics have revealed that infection by O. elektroscirrha does not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2 lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2 alter the balance between exogenous and endogenous sources of immunity remains unknown. We fed monarchs two species of milkweed; A. curassavica (medicinal) and A. incarnata (non-medicinal) grown under ambient CO2 (aCO2 ) or eCO2 . We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions. The melanization response of late-instar larvae was reduced on medicinal milkweed in comparison to non-medicinal milkweed. Moreover, the endogenous immune responses of early-instar larvae to infection by O. elektroscirrha were generally lower in larvae reared on foliage from aCO2 plants and higher in larvae reared on foliage from eCO2 plants. When grown under eCO2 , milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2 results in increased endogenous immune function. Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.


Assuntos
Asclepias , Borboletas , Animais , Dióxido de Carbono , Herbivoria , Interações Hospedeiro-Parasita , Imunidade
8.
Ecology ; 101(12): e03192, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32892339

RESUMO

Deciphering the ecological roles of plant secondary metabolites requires integrative studies that assess both the allocation patterns of compounds and their bioactivity in ecological interactions. Secondary metabolites have been primarily studied in leaves, but many are unique to fruits and can have numerous potential roles in interactions with both mutualists (seed dispersers) and antagonists (pathogens and predators). We described 10 alkenylphenol compounds from the plant species Piper sancti-felicis (Piperaceae), quantified their patterns of intraplant allocation across tissues and fruit development, and examined their ecological role in fruit interactions. We found that unripe and ripe fruit pulp had the highest concentrations and diversity of alkenylphenols, followed by flowers; leaves and seeds had only a few compounds at detectable concentrations. We observed a nonlinear pattern of alkenylphenol allocation across fruit development, increasing as flowers developed into unripe pulp then decreasing as pulp ripened. This pattern is consistent with the hypothesis that alkenylphenols function to defend fruits from pre-dispersal antagonists and are allocated based on the contribution of the tissue to the plant's fitness, but could also be explained by non-adaptive constraints. To assess the impacts of alkenylphenols in interactions with antagonists and mutualists, we performed fungal bioassays, field observations, and vertebrate feeding experiments. In fungal bioassays, we found that alkenylphenols had a negative effect on the growth of most fungal taxa. In field observations, nocturnal dispersers (bats) removed the majority of infructescences, and diurnal dispersers (birds) removed a larger proportion of unripe infructescences. In feeding experiments, bats exhibited an aversion to alkenylphenols, but birds did not. This observed behavior in bats, combined with our results showing a decrease in alkenylphenols during ripening, suggests that alkenylphenols in fruits represent a trade-off (defending against pathogens but reducing disperser preference). These results provide insight into the ecological significance of a little studied class of secondary metabolites in seed dispersal and fruit defense. More generally, documenting intraplant spatiotemporal allocation patterns in angiosperms and examining mechanisms behind these patterns with ecological experiments is likely to further our understanding of the evolutionary ecology of plant chemical traits.


Assuntos
Frutas , Dispersão de Sementes , Animais , Aves , Folhas de Planta , Sementes
9.
Mar Pollut Bull ; 159: 111387, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32827871

RESUMO

Coral reef ecosystems are declining due to multiple interacting stressors. A bioassessment framework focused on stressor-response associations was developed to help organize and communicate complex ecological information to support coral reef conservation. This study applied the Biological Condition Gradient (BCG), initially developed for freshwater ecosystems, to fish assemblages of U.S. Caribbean coral reef ecosystems. The reef fish BCG describes how biological conditions changed incrementally along a gradient of increasing anthropogenic stress. Coupled with physical and chemical water quality data, the BGC forms a scientifically defensible basis to prioritize, protect and restore water bodies containing coral reefs. Through an iterative process, scientists from across the U.S. Caribbean used fishery-independent survey data and expert knowledge to develop quantitative decision rules to describe six levels of coral reef ecosystem condition. The resultant reef fish BCG provides an effective tool for identifying healthy and degraded coral reef ecosystems and has potential for global application.


Assuntos
Antozoários , Recifes de Corais , Animais , Região do Caribe , Ecossistema , Peixes , Índias Ocidentais
10.
Ecol Lett ; 22(2): 332-341, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30548569

RESUMO

Phytochemical traits are a key component of plant defense theory. Chemical ecology has been biased towards studying effects of individual metabolites even though effective plant defenses are comprised of diverse mixtures of metabolites. We tested the phytochemical landscape hypothesis, positing that trophic interactions are contingent upon their spatial location across a phytochemically diverse landscape. Specifically, intraspecific phytochemical changes associated with vertical strata in forests were hypothesised to affect herbivore communities of the neotropical shrub Piper kelleyi Tepe (Piperaceae). Using a field experiment, we found that phytochemical diversity increased with canopy height, and higher levels of phytochemical diversity located near the canopy were characterised by tradeoffs between photoactive and non-photoactive biosynthetic pathways. For understory plants closer to the ground, phytochemical diversity increased as direct light transmittance decreased, and these plants were characterised by up to 37% reductions in herbivory. Our results suggest that intraspecific phytochemical diversity structures herbivore communities across the landscape, affecting total herbivory.


Assuntos
Herbivoria , Piper , Florestas , Compostos Fitoquímicos , Plantas
11.
Front Plant Sci ; 9: 1155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174676

RESUMO

Diverse mixtures of plant natural products play an important role in plant-herbivore-parasitoid interactions. In the pursuit of understanding these chemically-mediated interactions, we are often faced with the challenge of determining ecologically and biologically relevant compounds present in complex phytochemical mixtures. Using a network-based approach, we analyzed binned 1H-NMR data from 196 prepared mixtures of commonly studied secondary metabolites including alkaloids, amides, terpenes, iridoid glycosides, saponins, phenylpropanoids, flavonoids and phytosterols. The mixtures included multiple dimensions of chemical diversity, including molecular complexity, mixture complexity and differences in relative compound concentrations. This approach yielded modules of co-occurring chemical shifts that were correlated with specific compounds or common structural features shared across compounds. This approach was then applied to crude phytochemical extracts of 31 species in the phytochemically diverse tropical plant genus Piper (Piperaceae). Combining the activity of crude plant extracts in an array of bioassays with our 1H-NMR network approach, we identified a potential prenylated benzoic acid from these mixtures that exhibits antifungal properties and identified small structural differences that were potentially responsible for antifungal activity. In an intraspecific analysis of individual Piper kelleyi plants, we also found ontogenetic differences in chemistry that may affect natural plant enemies. In sum, this approach allowed us to characterize mixtures as useful network modules and to combine chemical and ecological datasets to identify biologically important compounds from crude extracts.

13.
Ecology ; 98(7): 1750-1756, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28444952

RESUMO

A longstanding paradigm in ecology is that there are positive associations between herbivore diversity, specialization, and plant species diversity, with a focus on taxonomic diversity. However, phytochemical diversity is also an informative metric, as insect herbivores interact with host plants not as taxonomic entities, but as sources of nutrients, primary metabolites, and mixtures of attractant and repellant chemicals. The present research examines herbivore responses to phytochemical diversity measured as volatile similarity in the tropical genus Piper. We quantified associations between naturally occurring volatile variation and herbivory by specialist and generalist insects. Intraspecific similarity of volatile compounds across individuals was associated with greater overall herbivory. A structural equation model supported the hypothesis that plot level volatile similarity caused greater herbivory by generalists, but not specialists, which led to increased understory plant richness. These results demonstrate that using volatiles as a functional diversity metric is informative for understanding tropical forest diversity and indicate that generalist herbivores contribute to the maintenance of diversity.


Assuntos
Biodiversidade , Florestas , Herbivoria , Animais , Insetos , Plantas
14.
Org Lett ; 18(23): 6082-6085, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27934357

RESUMO

The novel reactivity of in situ generated aza-oxyallyl cation intermediates with a variety of carbonyl compounds is reported to construct 4-oxazolidinones motifs with good yields and diastereoselectivities. This simple and efficient (3 + 2) cycloaddition method provides direct access to potential bioactive compounds.

15.
New Phytol ; 212(1): 208-19, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27279551

RESUMO

Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects.


Assuntos
Lepidópteros/fisiologia , Compostos Fitoquímicos/metabolismo , Piperaceae/parasitologia , Animais , Variação Genética , Lepidópteros/genética , Modelos Biológicos , Parasitos/fisiologia , Compostos Fitoquímicos/química , Folhas de Planta/química , Análise de Componente Principal , Especificidade da Espécie
16.
Org Lett ; 18(3): 476-9, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26820040

RESUMO

An oxidative diaza-(3 + 2) cycloaddition reaction of simple urea derivatives with substituted indoles has been developed. This transformation provides rapid access to highly functionalized imidazoloindolines that are represented in bioactive compounds. The reported method is compatible with a wide variety of functional groups and directly provides unique heterocyclic scaffolds from indoles and a simple urea derivative.

17.
J Am Chem Soc ; 137(47): 14858-60, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26562215

RESUMO

A regioselective dearomative aza-(3 + 2) cycloaddition reaction of substituted indoles with α-halohydroxamates has been developed. This transformation provides rapid access to highly functionalized pyrroloindolines that are represented in large number of bioactive compounds. The natural product, physostigmine, has been concisely synthesized utilizing this method.

18.
Proc Natl Acad Sci U S A ; 112(35): 10973-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283384

RESUMO

What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores.


Assuntos
Biodiversidade , Insetos/fisiologia , Compostos Fitoquímicos/classificação , Plantas/parasitologia , Simbiose , Animais , Insetos/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Plantas/classificação , Espectroscopia de Prótons por Ressonância Magnética
19.
Org Lett ; 16(19): 5112-5, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25215513

RESUMO

Diamination of alkenes and dienes has found widespread use in the synthesis of biologically active target molecules. Although the 1,2-diamination of alkenes has been comprehensively explored, versatile methods that install higher order 1,n-diamine moieties (e.g., n = 3-5) are not broadly developed. Herein, we report the development of an oxidative 1,4-diamination of dienes. This method represents one of the scarce examples of exclusive regioselectivity for 1,4-diamination. The reaction is easy to perform, uses simple reagents, works with a variety of functionalized dienes, and provides unique heterocyclic products.


Assuntos
Diaminas/química , Compostos Heterocíclicos/síntese química , Ureia/análogos & derivados , Ureia/química , Catálise , Compostos Heterocíclicos/química , Estrutura Molecular , Oxirredução
20.
Insect Biochem Mol Biol ; 53: 73-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25138711

RESUMO

exoBrevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive Mountain Pine Beetle (Dendroctonus ponderosae). It is also found in other insects and the African elephant. Despite its significance, very little is known about its biosynthesis. A recent microarray analysis implicated a small cluster of three D. ponderosae genes in exo-brevicomin biosynthesis, two of which had identifiable open reading frames (Aw et al., 2010; BMC Genomics 11:215). Here we report further expression profiling of two genes in that cluster and functional analysis of their recombinantly-produced enzymes. One encodes a short-chain dehydrogenase that used NAD(P)(+) as a co-factor to catalyze the oxidation of (Z)-6-nonen-2-ol to (Z)-6-nonen-2-one. We therefore named the enzyme (Z)-6-nonen-2-ol dehydrogenase (ZnoDH). The other encodes the cytochrome P450, CYP6CR1, which epoxidized (Z)-6-nonen-2-one to 6,7-epoxynonan-2-one with very high specificity and substrate selectivity. Both the substrates and products of the two enzymes are intermediates in the exo-brevicomin biosynthetic pathway. Thus, ZnoDH and CYP6CR1 are enzymes that apparently catalyze the antepenultimate and penultimate steps in the exo-brevicomin biosynthetic pathway, respectively.


Assuntos
Vias Biossintéticas , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Besouros/enzimologia , Feromônios/biossíntese , Aminoácidos , Animais , Catálise , Esterases/química , Feminino , Perfilação da Expressão Gênica , Cetonas , Masculino , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA