Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 599-600: 739-749, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28494297

RESUMO

Episodic acidification during snowmelt is a natural phenomenon that can be intensified by acidic deposition from heavy industry. In Canada's oil sands region, acid deposition is estimated to be as much as 5% of the Canadian total and large tracks of northeastern Alberta are considered acid-sensitive because of extensive peatland habitats with poorly weathered soils. To identify the frequency, duration and severity of acidification episodes during snowmelt (the predominant hydrological period for delivery of priority pollutants from atmospheric oil sands emissions to surface waters), a 25-year record (1989 to 2014) of automated water quality data (pH, temperature, conductivity) was assembled for 3 rivers along with a shorter record (2012-2014) for another 2 rivers. Acidic episodes (pH<7, ANC<0) were recorded during 39% of all 83 snowmelt events. The severity (duration x magnitude) of episodic acidification increased exponentially over the study period (r2=0.56, P<0.01) and was strongly correlated (P<0.01) with increasing maximum air temperature and weakly correlated with regional land development (P=0.06). Concentrations of aluminum and 11 priority pollutants (Sb, As, Be, Cd, Cr, Cu, Pb, Se, Ag, Tl and Zn) were greatest (P<0.01) during low (<6.5) pH episodes, particularly when coincident with high discharge, such that aluminum and copper concentrations were at times high enough to pose a risk to juvenile rainbow trout (Oncorhynchus mykiss). Although low pH (pH<6.5) was observed during only 8% of 32 acidification episodes, when present, low pH typically lasted 10days. Episodic surface water acidification during snowmelt, and its potential effects on aquatic biota, is therefore an important consideration in the design of long-term monitoring of these typically alkaline (pH=7.72±0.05) rivers.

2.
Environ Monit Assess ; 109(1-3): 275-92, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16240203

RESUMO

The New England Governors and Eastern Canadian Premiers (NEG/ECP) adopted the Acid Rain Action Plan in June 1998, and issued a series of action items to support its work toward a reduction of sulfur dioxide (SO(2)) and nitrogen oxide (NO(x)) emissions in northeastern North America. One of these action items was the preparation of an updated critical load map using data from lakes in the NEG/ECP area. Critical load maps provide a more complete index of the surface water sensitivity to acidification. Combined sulfur and nitrogen critical loads and deposition exceedances were computed using Henriksen's Steady-State Water Chemistry (SSWC) model. Results show that 28% of all 2053 lakes studied have a critical load of 20 kg/ha/year or less, making them vulnerable to acid deposition. Emission reductions, and more specifically SO(2) emission reductions have proven beneficial because critical loads were exceeded in 2002 for 12.3% of all studied lakes. Those lakes are located in the more sensitive areas where geology is carbonate-poor. Of these lakes, 2.9% will never recover even with a complete removal of SO(4) deposition. Recovery from acidification for the remaining 9.4% of the lakes will require additional emission SO(2) reductions.


Assuntos
Chuva Ácida/prevenção & controle , Água Doce , Modelos Teóricos , Nitrogênio/análise , Enxofre/análise , Poluentes Atmosféricos , Canadá , Monitoramento Ambiental , New England , Dióxido de Enxofre
3.
Environ Pollut ; 137(1): 165-76, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15944047

RESUMO

The main aim of the international UNECE monitoring program ICP Waters under the Convention of Long-range Transboundary Air Pollution (CLRTAP) is to assess, on a regional basis, the degree and geographical extent of the impact of atmospheric pollution, in particular acidification, on surface waters. Regional trends are calculated for 12 geographical regions in Europe and North America, comprising 189 surface waters sites. From 1990-2001 sulphate concentrations decreased in all but one of the investigated regions. Nitrate increased in only one region, and decreased in three North American regions. Improvements in alkalinity and pH are widely observed. Results from the ICP Waters programme clearly show widespread improvement in surface water acid-base chemistry, in response to emissions controls programs and decreasing acidic deposition. Limited site-specific biological data suggest that continued improvement in the chemical status of acid-sensitive lakes and streams will lead to biological recovery in the future.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental , Cooperação Internacional , Poluentes Químicos da Água/análise , Chuva Ácida , Europa (Continente) , Água Doce , Humanos , Concentração de Íons de Hidrogênio , Nitratos/análise , América do Norte , Sulfatos/análise , Fatores de Tempo , Nações Unidas
4.
Environ Sci Technol ; 38(22): 6009-15, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15573600

RESUMO

In this study we have analyzed the hydrochemical effect of drought conditions during 311 hydrological episodes in nine headwater streams in central Ontario over the past 20 years. Acid Neutralization Capacity (ANC) was logarithmically correlated (p<0.05) to antecedent discharge in eight of the nine streams, with the largest decline in ANC occurring after low antecedent flow. In eight of the nine streams SO4(2-) was the most important driving mechanism of ANC decline, but dilution as well as organic acidity was important in several streams. No decrease in the SO4(2-) driven ANC decline was observed over the 20 year study period despite a approximately 40% reduction in SO4(2-) deposition. The strong correlation between ANC decline and low antecedent discharge demonstrates that episodic acidification during rain events is strongly associated with preceding drought conditions, especially in wetland-dominated catchments. The results have important implications for recoveryfrom acidification, especially in northern ecosystems where climate scenarios forecast that warmer and drier conditions will be more common.


Assuntos
Chuva Ácida , Desastres , Monitoramento Ambiental/métodos , Sulfatos/análise , Poluentes da Água/análise , Chuva Ácida/efeitos adversos , Chuva Ácida/análise , Clima , Concentração de Íons de Hidrogênio , Ontário , Rios/química , Estações do Ano , Movimentos da Água
5.
Environ Monit Assess ; 88(1-3): 3-19, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14570408

RESUMO

Aquatic acidification by deposition of airborne pollutants emerged as an environmental issue in southeastern Canada during the 1970s. Drawing information from the extensive research and monitoring programs, a sequence of issue assessments demonstrated the necessity of reducing the anthropogenic emissions of acidifying pollutants, particularly sulphur dioxide (SO2). The 1991 Canada-U.S. Air Quality Agreement (AQA) was negotiated to reduce North American SO2 emissions by approximately 40% relative to 1980 levels by 2010, and at present, both countries have reduced emissions beyond their AQA commitment. In response to reduced SO2 emissions, atmospheric deposition of sulphate (SO4(2-)) and SO4(2-) concentrations in many lakes have declined, particularly in south-central Ontario and southern Québec. Sulphate deposition still exceeds aquatic critical loads throughout southeastern Canada however. Increasing pH or alkalinity (commonly deemed 'recovery') has been observed in only some lakes. Several biogeochemical factors have intervened to modify the lake chemistry response to reduced SO4(2-) input, notably release of stored SO4(2-) from wetlands following periods of drought and reduction in the export of base cations from terrestrial soils. Three examples from Ontario are presented to illustrate these responses. Significant increases in pH and alkalinity have been observed in many lakes in the Sudbury area of Ontario due to the large reductions in local SO2 emissions; 'early-stage' biological recovery is evident in these lakes. An integrated assessment model predicts that AQA emission reductions will not be sufficient to promote widespread chemical or biological recovery of Canadian lakes. Monitoring and modeling are mutually supporting assessment activities and both must continue.


Assuntos
Chuva Ácida/prevenção & controle , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Abastecimento de Água , Poluentes Atmosféricos/análise , Canadá , Meio Ambiente , Indústrias , Dióxido de Enxofre/análise , Estados Unidos
6.
Environ Pollut ; 78(1-3): 65-71, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-15091929

RESUMO

Fifty-six headwater Canadian Shield lakes were repetitively sampled from 1979 to 88 to determine their response to changes in acidic deposition of the period. Annual wet sulphate loadings varied between 38 and 83 meq m(-2), with highest deposition in the late 1970s followed by somewhat lower but variable deposition in the 1980s. Median pH of the lakes increased 0.42 pH units from 1979 to 1985 and decreased by 0.15 units between 1985 and 1988. Short water renewal times (x=1.1 y) promoted rapid equilibration. Since lake were so responsive to changes in SO4(2-) inputs, they were at or near steady state at all times. Comparison of predicted original pH and ANC with 1979 data indicate a median decline of 0.45 pH units and a loss of 34 microeq litre(-1). ANC. Four of 9 lakes were found to be historically fishless, based on the continued presence of Chaoborus americanus in sediment cores. The remaining five lakes historically had fish populations, but fish were not collected in 1979 when pH ranged betwen 4.6 and 5.3. By 1987, fish species were found in five of these lakes where pH had increased on average by 0.9 pH units. Our data indicate that water quality improvements could allow for the reinvasion or resumption of recruitment for a significant number of Ontario lakes.

7.
Environ Pollut ; 77(2-3): 243-52, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-15091965

RESUMO

Four watershed acidification models (TMWAM, ETD, ILWAS, and RAINS) are reviewed and a comparison of model performance is presented for a common watershed. The models have been used to simulate the dynamics of water quantity and quality at Batchawana Watershed, Canada, a sub-basin of the Turkey Lakes Watershed. The computed results are compared with observed data for a four-year period (Jan. 1981-Dec. 1984). The models exhibit a significant range in the ability to simulate the daily, monthly and seasonal changes present in the observed data. Monthly watershed outflows and lake chemistry predictions are compared to observed data. pH and ANC are the only two chemical parameters common to all four models. Coefficient of efficiency (E), linear (r) and rank (R) correlation coefficients, and regression slope (s) are used to compare the goodness of fit of the simulated with the observed data. The ILWAS, TMWAM and RAINS models performed very well in predicting the monthly flows, with values of r and R of approximately 0.98. The ETD model also showed strong correlations with linear (r) and rank (R) correlation coefficients of 0.896 and 0.892, respectively. The results of the analyses showed that TMWAM provided the best simulation of pH (E=0.264, r=0.648), which is slightly better than ETD (E=0.240, r=0.549), and much better than ILWAS (E=-2.965, r=0.293), and RAINS (E=-4.004, r=0.473). ETD was found to be superior in predicting ANC (E=0.608, r=0.781) as compared to TMWAM (E=0.340, r=0.598), ILWAS (E=0.275, r=0.442), and RAINS (E=-1.048, r=0.356). The TMWAM model adequately simulated SO4 over the four-year period (E=0.423, r=0.682) but the ETD (E=-0.904, r=0.274), ILWAS (E=-4.314, r=0.488), and RAINS (E=-6.479, r=0.126) models all performed poorer than the benchmark model (mean observed value).

8.
Environ Monit Assess ; 23(1-3): 71-82, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24227091

RESUMO

Evaluations have been made of the key chemical factors in the aquatic effects upon surface waters due to acidic precipitation in eastern Canada. The region of Canada east of the Manitoba/Ontario border was divided into 22 aggregates and assessments of inorganic and organic ion chemistry appraised relative to sulphate deposition rates and distributions. Aquatic sensitivity is largely dominated by the concentration, distribution and magnitude of SO inf4 (sup2-) (sulphate) deposition and by the prevalent geology and derived soils found in each aggregate. The RAISON system provided an adaptable and highly flexible platform to evaluate interactively, multiple data sets of divergent characteristics. Attributes usually associated with geographical information systems are significantly augmented by quantitative numerical and stochastic capabilities that were used extensively in this study.

9.
Environ Monit Assess ; 23(1-3): 99-113, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24227093

RESUMO

Changes in SO inf4 (sup2-) deposition predicted to occur in response to implementation of announced SO2 emission control programs in Canada and the U.S.A. have been used as input to water chemistry models thereby giving an estimate of the changes in lake acid neutralizing capacity (ANC) and pH that can be expected from these programs. Eastern Canada has been divided into 22 subregions for the purpose of this analysis. Relative to the current level (1982-86) of SO inf4 (sup2-) deposition (Scenario 1), the effect of the Canadian SO2 emission control program alone (Scenario 2) is compared to that obtained when controls are implemented throughout North America (Scenarios 3 and 4). SO2 emission reduction will effect a shrinkage of the high wet SO inf4 (sup2-) deposition field in NE North America such that under Scenario 4 conditions, almost no area will remain in Canada that receives >20 kg ha(-1) yr(-1). The greatest decrease in deposition and resulting change in lake chemistry occurs in southern Ontario and southwestern Quebec. ANC distributions shift to higher concentrations and the percentage of lakes having pH<6 decreases in these areas. The Atlantic Provinces will obtain only a minor benefit from the control programs, i.e. experiencing only a small decrease in deposition and improvement in water quality. High sensitivity of the terrain in many parts of Atlantic Canada means that large numbers of lakes will remain acidic (i.e. ANC<0) and/or have pH<6 (an important biological threshold) even after full implementation of the current plans for SO2 control in Canada and the U.S.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA