Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; : e0053724, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934597

RESUMO

Various isolates of the Cydia pomonella granulovirus (CpGV) are used as insect pest control agents against codling moth (CM, Cydia pomonella L.), a predominant pest in apple orchards. Three different types (I-III) of dominantly inherited field resistance of CM larvae to CpGV have been recently identified. In this study, transcription of virus genes in midgut cells of type II-resistant CM larvae infected with different CpGV isolates, i.e., CpGV-M and CpGV-S (both prone to type II resistance) as well as CpGV-E2 (breaking type II resistance) was determined by strand-specific RNA sequencing (RNA-Seq) at an early infection stage (72 h post infection). Based on principal component analysis of read counts and the quantitative distribution of single nucleotide polymorphisms (SNPs) in the RNA-Seq data, a bioinformatics analysis pipeline was developed for an a posteriori identification of the infective agents. We report that (i) identification of infective agent is crucial, especially in in vivo infection experiments, when activation of covert virus infections is a possibility, (ii) no substantial difference between CpGV-M and CpGV-S transcription was found in type II-resistant CM larvae despite a different resistance mechanism, (iii) the transcription level of CpGV-M and CpGV-S was much lower than that of CpGV-E2, and (iv) orf59 (sod), orf89 (pif-6), orf92 (p18), and orf137 (lef-10) were identified as significantly downregulated genes in resistance-prone isolates CpGV-M and CpGV-S. For type II resistance of CM larvae, we conclude that CpGV-M and CpGV-S are both able to enter midgut cells, but viral transcription is significantly impaired at an early stage of infection compared to the resistance-breaking isolate CpGV-E2. IMPORTANCE: CpGV is a highly virulent pathogen of codling moth, and it has been developed into one of the most successful commercial baculovirus biocontrol agents for pome fruit production worldwide. The emergence of field resistance in codling moth to commercial CpGV products is a threat toward the sustainable use of CpGV. In recent years, different types of resistance (type I-III) were identified. For type II resistance, very little is known regarding the infection process. By studying the virus gene expression patterns of different CpGV isolates in midguts of type II-resistant codling moth larvae, we found that the type II resistance mechanism is most likely based on intracellular factors rather than a receptor component. By applying SNP mapping of the RNA-Seq data, we further emphasize the importance of identifying the infective agents in in vivo experiments when activation of a covert infection cannot be excluded.

2.
J Invertebr Pathol ; 205: 108121, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705355

RESUMO

The oak processionary moth (OPM) Thaumetopoea processionea is a pest of oak trees and poses health risks to humans due to the urticating setae of later instar larvae. For this reason, it is difficult to rear OPM under laboratory conditions, carry out bioassays or examine larvae for pathogens. Biological control targets the early larval instars and is based primarily on commercial preparations of Bacillus thuringiensis ssp. kurstaki (Btk). To test the entomopathogenic potential of other spore-forming bacteria, a user-friendly bioassay system was developed that (i) applies bacterial spore suspensions by oak bud dipping, (ii) targets first instar larvae through feeding exposure and (iii) takes into account their group-feeding behavior. A negligible mortality in the untreated control proved the functionality of the newly established bioassay system. Whereas the commercial Btk HD-1 strain was used as a bioassay standard and confirmed as being highly efficient, a Bacillus wiedmannii strain was ineffective in killing OPM larvae. Larvae, which died during the infection experiment, were further subjected to Nanopore sequencing for a metagenomic approach for entomopathogen detection. It further corroborated that B.wiedmannii was not able to infect and establish in OPM, but identified potential insect pathogenic species from the genera Serratia and Pseudomonas.


Assuntos
Bioensaio , Larva , Mariposas , Controle Biológico de Vetores , Animais , Mariposas/microbiologia , Bioensaio/métodos , Controle Biológico de Vetores/métodos , Larva/microbiologia , Metagenoma , Quercus/microbiologia , Bacillus thuringiensis/genética
3.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767624

RESUMO

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Assuntos
Bombyx , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Nucleopoliedrovírus , Polimorfismo de Nucleotídeo Único , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Animais , Sequenciamento por Nanoporos/métodos , Bombyx/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Viral
4.
Sci Rep ; 14(1): 8525, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609404

RESUMO

Rapid and reliable detection of pathogens is crucial to complement the growing industry of mass-reared insects, in order to safeguard the insect colonies from outbreak of diseases, which may cause significant economic loss. Current diagnostic methods are mainly based on conventional PCR and microscopic examination, requiring prior knowledge of disease symptoms and are limited to identifying known pathogens. Here, we present a rapid nanopore-based metagenomics approach for detecting entomopathogens from the European house cricket (Acheta domesticus). In this study, the Acheta domesticus densovirus (AdDV) was detected from diseased individuals using solely Nanopore sequencing. Virus reads and genome assemblies were obtained within twenty-four hours after sequencing. Subsequently, due to the length of the Nanopore reads, it was possible to reconstruct significantly large parts or even the entire AdDV genome to conduct studies for genotype identification. Variant analysis indicated the presence of three AdDV genotypes within the same house cricket population, with association to the vital status of the diseased crickets. This contrast provided compelling evidence for the existence of non-lethal AdDV genotypes. These findings demonstrated nanopore-based metagenomics sequencing as a powerful addition to the diagnostic tool kit for routine pathogen surveillance and diagnosis in the insect rearing industry.


Assuntos
Densovirus , Gryllidae , Sequenciamento por Nanoporos , Humanos , Animais , Densovirus/genética , Genótipo , Surtos de Doenças
5.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38197876

RESUMO

Generating complete, high-quality genome assemblies is key for any downstream analysis, such as comparative genomics. For bacterial genome assembly, various algorithms and fully automated pipelines exist, which are free-of-charge and easily accessible. However, these assembly tools often cannot unambiguously resolve a bacterial genome, for example due to the presence of sequence repeat structures on the chromosome or on plasmids. Then, a more sophisticated approach and/or manual curation is needed. Such modifications can be challenging, especially for non-bioinformaticians, because they are generally not considered as a straightforward process. In this study, we propose a standardized approach for manual genome completion focusing on the popular hybrid assembly pipeline Unicycler. The provided Galaxy workflow addresses two weaknesses in Unicycler's hybrid assemblies: (i) collapse of inter-plasmidic repeats and (ii) false loss of single-copy sequences. To demonstrate and validate how to detect and resolve these assembly errors, we use two genomes from the Bacillus cereus group. By applying the proposed pipeline following an automated assembly, the genome sequence quality can be significantly improved.


Assuntos
Algoritmos , Genoma Bacteriano , Fluxo de Trabalho , Plasmídeos/genética , Genômica
7.
Arch Virol ; 168(7): 182, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37322175

RESUMO

Viruses of four families of arthropod-specific, large dsDNA viruses (the nuclear arthropod large DNA viruses, or NALDVs) possess homologs of genes encoding conserved components involved in the baculovirus primary infection mechanism. The presence of such homologs encoding per os infectivity factors (pif genes), along with their absence from other viruses and the occurrence of other shared characteristics, suggests a common origin for the viruses of these families. Therefore, the class Naldaviricetes was recently established, accommodating these four families. In addition, within this class, the ICTV approved the creation of the order Lefavirales for three of these families, whose members carry homologs of the baculovirus genes that code for components of the viral RNA polymerase, which is responsible for late gene expression. We further established a system for the binomial naming of all virus species in the order Lefavirales, in accordance with a decision by the ICTV in 2019 to move towards a standardized nomenclature for all virus species. The binomial species names for members of the order Lefavirales consist of the name of the genus to which the species belongs (e.g., Alphabaculovirus), followed by a single epithet that refers to the host species from which the virus was originally isolated. The common names of viruses and the abbreviations thereof will not change, as the format of virus names lies outside the remit of the ICTV.


Assuntos
Artrópodes , Granulovirus , Vírus , Animais , Artrópodes/genética , Vírus de DNA/genética , Baculoviridae , Especificidade de Hospedeiro
8.
Front Cell Infect Microbiol ; 13: 1129177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021121

RESUMO

Bacillus thuringiensis subsp. tenebrionis (Btt) produces a coleopteran-specific crystal protoxin protein (Cry3Aa δ-endotoxin). After its discovery in 1982, the strain NB125 (DSM 5526) was eventually registered in 1990 to control the Colorado potato beetle (Leptinotarsa decemlineata). Gamma-irradiation of NB125 resulted in strain NB176-1 (DSM 5480) that exhibited higher cry3Aa production and became the active ingredient of the plant protection product Novodor® FC. Here, we report a comparative genome analysis of the parental strain NB125, its derivative NB176-1 and the current commercial production strain NB176. The entire genome sequences of the parental and derivative strains were deciphered by a hybrid de novo approach using short (Illumina) and long (Nanopore) read sequencing techniques. Genome assembly revealed a chromosome of 5.4 to 5.6 Mbp and six plasmids with a size range from 14.9 to 250.5 kbp for each strain. The major differences among the original NB125 and the derivative strains NB176-1 and NB176 were an additional copy of the cry3Aa gene, which translocated to another plasmid as well as a chromosomal deletion (~ 178 kbp) in NB176. The assembled genome sequences were further analyzed in silico for the presence of virulence and antimicrobial resistance (AMR) genes.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Endotoxinas , Plasmídeos , Besouros/genética , Besouros/metabolismo , Genômica , Proteínas Hemolisinas/genética , Proteínas de Bactérias/genética
9.
Mol Phylogenet Evol ; 182: 107745, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842732

RESUMO

Baculoviruses are capable to acquire insect host transposable elements (TEs) in their genomes and are hypothesized as possible vectors of insect transposons between Lepidopteran species. Here, we investigated the host origin of two TEs, namely the Tc1/mariner-like element TCp3.2 and a 0.7 kbp insertion sequence (IS07), found in the genome of different isolates of Cydia pomonella granulovirus (CpGV), a member of the Betabaculovirus genus. The sequences of both TEs were searched for in the full genome sequence database of codling moth (CM, Cydia pomonella L.). A total of eleven TCp3.2 TE copies and 76 copies of the IS07 fragments were identified in the CM genome. These TEs were distributed over the 22 autosomes and the Z chromosome (chr1) of CM, except chr6, chr12, chr16, chr23, chr27 and the W chromosome (chr29). TCp3.2 copies with two transposase genes in opposite direction, representing a novel feature, were identified on chr10 and chr18. The TCp3.2 transposase was characterized by DD41D motif of classic Tc1/mariner transposons, consisting of DNA-binding domain, catalytic domain and nuclear localization signal (NLS). Transcription analyses of uninfected and CpGV-infected CM larvae suggested a doubling of the TCp3.2 transposase transcription rate in virus infected larvae. Furthermore, IS07 insertion into the CpGV genome apparently added new transcription initiation sites to the viral genome. The global analysis of the distribution of two TEs in the genome of CM addressed the influx of mobile TEs from CM to CpGV, a genetic process that contributes to the population diversity of baculoviruses.


Assuntos
Granulovirus , Mariposas , Animais , Mariposas/genética , Granulovirus/genética , Elementos de DNA Transponíveis , Filogenia , Transposases/genética
10.
Insects ; 13(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735870

RESUMO

Codling moth (Cydia pomonella L.) is a very important pest in apple, pear, and walnut orchards worldwide, including the USA. Cydia pomonella granulovirus (CpGV) is used to control codling moth in organic and conventional production. Due to increasing codling moth infestations from organic apple orchards in Washington State, USA, five codling moth colonies (WA1-WA5) were screened for their susceptibility relative to the isolate GV-0001, the main active ingredient of Cyd-X®, using a discriminating concentration of 6 × 104 OB/mL. Compared to a susceptible laboratory colony, the observed results indicated that GV-0001 lacked efficacy against codling moth colony WA3. It was confirmed that WA3 was the first case of codling moth resistance to CpGV in the USA. Further testing of WA3 was performed on a range of CpGV isolates and a lack of efficacy was observed against additional isolates. However, three newly developed CpGV preparations can efficiently infect larvae from the resistant colony WA3. Our results suggest that there is an urgent need to monitor the situation in the USA, aiming to prevent the emergence or spread of additional codling moth populations with CpGV resistance. Strategies to sustain the efficacy of codling moth control using novel CpGV formulations need to be developed.

11.
J Invertebr Pathol ; 192: 107770, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597278

RESUMO

The olive leaf moth (jasmine moth), Palpita vitrealis (Lepidoptera: Crambidae), is an important insect pest of olives in several Mediterranean countries. A new alphabaculovirus was isolated from diseased larvae of P. vitrealis in Egypt, first in Giza in spring 2005 and again in Marsa Matrouh in 2019.The larvae exhibited typical symptoms of a baculovirus infection. Light and scanning electron microscopy studies revealed polyhedral occlusion bodies. Transmission electron microscopy of ultrathin sections of purified OBs revealed virions with multiple embedded nucleocapsids. The identity of the two virus isolates was confirmed by sequencing the partial polyhedrin and lef-8 genes, and sequence comparison suggested a relationship to group I alphabaculoviruses. Therefore, this virus was termed Palpita vitrealis nucleopolyhedrovirus (PaviNPV). Whole genome sequencing of the PaviNPV isolate from Giza (Gz05) revealed a genome of 117,533 bp, 131 open reading frames (ORFs) and four homologous repeat (hr) regions. Phylogenetic reconstruction and genetic distance analyses using 38 core genes indicated that PaviNPV should be considered to belong to a novel species within the genus Alphabaculovirus. In bioassays, PaviNPV was highly virulent against second-instar larvae of P. vitrealis. The study reports a novel baculovirus that might have potential as a biological control agent of the olive leaf moth.


Assuntos
Mariposas , Nucleopoliedrovírus , Olea , Animais , Egito , Genoma Viral , Larva , Olea/genética , Filogenia , Folhas de Planta
12.
Insects ; 14(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36662025

RESUMO

In the original publication [...].

13.
Viruses ; 13(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34696382

RESUMO

Cydia pomonella granulovirus (CpGV) is a widely used biological control agent of the codling moth. Recently, however, the codling moth has developed different types of field resistance against CpGV isolates. Whereas type I resistance is Z chromosomal inherited and targeted at the viral gene pe38 of isolate CpGV-M, type II resistance is autosomal inherited and targeted against isolates CpGV-M and CpGV-S. Here, we report that mixtures of CpGV-M and CpGV-S fail to break type II resistance and is expressed at all larval stages. Budded virus (BV) injection experiments circumventing initial midgut infection provided evidence that resistance against CpGV-S is midgut-related, though fluorescence dequenching assay using rhodamine-18 labeled occlusion derived viruses (ODV) could not fully elucidate whether the receptor binding or an intracellular midgut factor is involved. From our peroral and intra-hemocoel infection experiments, we conclude that two different (but genetically linked) resistance mechanisms are responsible for type II resistance in the codling moth: resistance against CpGV-M is systemic whereas a second and/or additional resistance mechanism against CpGV-S is located in the midgut of CpR5M larvae.


Assuntos
Resistência à Doença/genética , Granulovirus/fisiologia , Larva/genética , Larva/virologia , Mariposas/genética , Mariposas/virologia , Animais , Bioensaio , Agentes de Controle Biológico , Trato Gastrointestinal , Granulovirus/classificação , Larva/anatomia & histologia , Mariposas/classificação
14.
Microbiol Resour Announc ; 10(34): e0056521, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435851

RESUMO

We report the entire genome sequence of an isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus from Nigeria, West Africa. The genome is 132,710 bp long and contains 144 open reading frames. The GC content is 40.3% and, based on baculovirus species demarcation criteria, the isolate belongs to the species Spodoptera frugiperda multiple nucleopolyhedrovirus.

15.
Viruses ; 13(5)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068017

RESUMO

The mulberry silkworm, Bombyx mori (L.), is a model organism of lepidopteran insects with high economic importance. The viral diseases of the silkworm caused by Bombyx mori nucleopolyhedrovirus (BmNPV) and Bombyx mori bidensovirus (BmBDV) inflict huge economic losses and significantly impact the sericulture industry of India and other countries. To understand the distribution of Indian isolates of the BmNPV and to investigate their genetic composition, an in-depth population structure analysis was conducted using comprehensive and newly developed genomic analysis methods. The seven new Indian BmNPV isolates from Anantapur, Dehradun, Ghumarwin, Jammu, Kashmir, Mysore and Salem grouped in the BmNPV clade, and are most closely related to Autographa californica multiple nucleopolyhedrovirus and Rachiplusia ou multiple nucleopolyhedrovirus on the basis of gene sequencing and phylogenetic analyses of the partial polh, lef-8 and lef-9 gene fragments. The whole genome sequencing of three Indian BmNPV isolates from Mysore (-My), Jammu (-Ja) and Dehradun (-De) was conducted, and intra-isolate genetic variability was analyzed on the basis of variable SNP positions and the frequencies of alternative nucleotides. The results revealed that the BmNPV-De and BmNPV-Ja isolates are highly similar in their genotypic composition, whereas the population structure of BmNPV-My appeared rather pure and homogenous, with almost no or few genetic variations. The BmNPV-De and BmNPV-Ja samples further contained a significant amount of BmBDV belonging to the Bidnaviridae family. We elucidated the genotype composition within Indian BmNPV and BmBDV isolates, and the results presented have broad implications for our understanding of the genetic diversity and evolution of BmNPV and co-occurring BmBDV isolates.


Assuntos
Bombyx/virologia , Genótipo , Vírus de Insetos/genética , Nucleopoliedrovírus/genética , Animais , DNA Viral , Genes Virais , Genoma Viral , Índia , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
16.
Mol Biol Evol ; 38(9): 3512-3530, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34191026

RESUMO

The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host-virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts' genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.


Assuntos
Artrópodes , Vírus , Animais , Artrópodes/genética , Baculoviridae/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Insetos/genética , Vírus/genética
17.
Sci Rep ; 11(1): 10151, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980962

RESUMO

Microsporidian infections of insects are important natural constraints of population growth, often reducing lifespan, fecundity and fertility of the infected host. The recently discovered Tubulinosema suzukii infects Drosophila suzukii (spotted wing drosophila, SWD), an invasive pest of many fruit crops in North America and Europe. In laboratory tests, fitness effects on larval and adult stages were explored. High level infection after larval treatment caused up to 70% pupal mortality, a decreased lifespan and a 70% reduced oviposition of emerging adults in biparental infection clusters. A shift to higher proportion of female offspring compared to controls suggested a potential parthenogenetic effect after microsporidian infection. A clear sex-linkage of effects was noted; females were specifically impaired, as concluded from fecundity tests with only infected female parents. Additive effects were noted when both parental sexes were infected, whereas least effects were found with only infected male parents, though survival of males was most negatively affected if they were fed with T. suzukii spores in the adult stage. Although most negative effects on fitness parameters were revealed after larval treatment, infection of offspring was never higher than 4%, suggesting limited vertical transmission. For that reason, a self-reliant spread in natural SWD populations would probably only occur by spore release from cadavers or frass.


Assuntos
Drosophila/microbiologia , Microsporídios , Animais , Contagem de Colônia Microbiana , Fertilidade , Controle de Insetos , Insetos Vetores/microbiologia , Estimativa de Kaplan-Meier , Larva , Longevidade , Mortalidade , Esporos Fúngicos
18.
Virology ; 558: 110-118, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33756423

RESUMO

The Cydia pomonella granulovirus (CpGV) has been used as a biological control agent of codling moth (Cydia pomonella), a severe global pest on pome fruit. Despite the economic importance, our knowledge of its molecular biology is still limited and a detailed picture of its gene expression is still missing. Here, we sequenced the transcriptome of codling moth larvae infected with the Mexican isolate CpGV-M and analyzed the expression of viral genes at 12, 48, and 96 h post infection (hpi). The results showed that two genes (p6.9 and pp31/39K) related to DNA binding of virus production, were highly expressed at 48 and 96 hpi. From 48 to 96 hpi, the expression of genes associated with virus replication and dissemination decreased, whereas the expression of genes related to infectious virion production and per os infectivity increased. This study provides a comprehensive view of CpGV gene expression patterns in host larvae.


Assuntos
Perfilação da Expressão Gênica , Granulovirus/genética , Larva/virologia , Mariposas/virologia , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Genes Virais , Replicação Viral
19.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33625353

RESUMO

The baculovirus Cydia pomonella granulovirus (CpGV) is a biocontrol agent used worldwide against the codling moth (CM), Cydia pomonella L., a severe pest in organic and integrated pome fruit production. Its successful application is increasingly challenged by the occurrence of CM populations resistant to commercial CpGV products. Whereas three types (I-III) of CpGV resistance have been identified, type I resistance compromising the efficacy of CpGV-M, the so-called Mexican isolate of CpGV, is assumed to be the most widely distributed resistance type in Central Europe. Despite the wide use of CpGV products as biocontrol agents, little information is available on gene-expression levels in CM larvae. In this study, the in vivo transcriptome of CpGV-M infecting susceptible (CpS) and resistant (CpRR1) CM larvae was analysed at 24, 48, 72, 96 and 120 hours post infection in the midgut and fat body tissue by using a newly developed microarray covering all ORFs of the CpGV genome. According to their transcript abundance, the CpGV genes were grouped into four temporal clusters to which groups of known and unknown function could be assigned. In addition, sets of genes differentially expressed in the midgut and fat body were found in infected susceptible CpS larvae. For the resistant CpRR1 larvae treated with CpGV-M, viral entry in midgut cells could be confirmed from onset but a significantly reduced gene expression, indicating that type I resistance is associated with a block of viral gene transcription and replication.


Assuntos
Granulovirus/genética , Granulovirus/isolamento & purificação , Mariposas/virologia , Transcriptoma , Animais , Europa (Continente) , Granulovirus/classificação , Granulovirus/fisiologia , Larva/imunologia , Larva/virologia , Mariposas/crescimento & desenvolvimento , Mariposas/imunologia , Doenças das Plantas/parasitologia
20.
Virus Evol ; 7(1): veaa073, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33505705

RESUMO

Genetic diversity of viruses is driven by genomic mutations and selection through its host, resulting in differences in virulence as well as host responses. For baculoviruses, which are naturally occurring pathogens of insects and which are frequently sprayed on hundred thousands to millions of hectares as biocontrol agents of insect pests, the phenomenon of virus-host co-evolution is of particular scientific interest and economic importance because high virulence of baculovirus products is essential and emergence of host resistance needs to be avoided as much as possible. In the present study, the population structure of twenty isolates of the Cydia pomonella granulovirus (CpGV), including twelve isolates from different geographic origins and eight commercial formulations, were studied on the basis of next-generation sequencing data and by analyzing the distribution of single nucleotide polymorphisms (SNPs). An entirely consensus sequence-free quantitative SNP analysis was applied for the identification of 753 variant SNP sites being specific for single as well as groups of CpGV isolates. Based on the quantitative SNP analysis, homogenous, heterogenous as well as mixed isolates were identified and their proportions of genotypes were deciphered, revealing a high genetic diversity of CpGV isolates from around the world. Based on hierarchical clustering on principal components (HCPC), six distinct isolate/group clusters were identified, representing the proposed main phylogenetic lineages of CpGV but comprising full genome information from virus mixtures. The relative location of different isolates in HCPC reflected the proportion of variable compositions of different genotypes. The established methods provide novel analysis tools to decipher the molecular complexity of genotype mixtures in baculovirus isolates, thus depicting the population structure of baculovirus isolates in a more adequate form than consensus based analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA