Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838194

RESUMO

The efficacy of nanostructured lipid carriers (NLC) for drug delivery strongly depends on their stability and cell uptake. Both properties are governed by their compositions and internal structure. To test the effect of the lipid composition of NLC on cell uptake and stability, three kinds of liquid lipids with different degrees of unsaturation are employed. After ensuring homogeneous size distributions, the thermodynamic characteristics, stability, and mixing properties of NLC are characterized. Then the rates and predominant pathways of cell uptake are determined. Although the same surfactant is used in all cases, different uptake rates are observed. This finding contradicts the view that the surface properties of NLC are dominated by the surfactant. Instead, the uptake rates are explained by the structure of the nanocarrier. Depending on the mixing properties, some liquid lipids remain inside the nanocarrier, while other liquid lipids are present on the surface. Nanocarriers with liquid lipids on the surface are taken up more readily by the cells. This shows that the engineering of efficient lipid nanocarriers requires a delicate balance of interactions between all components of the nanocarrier on the molecular level.

2.
Tissue Barriers ; 12(1): 2163820, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36680530

RESUMO

Orally administered drugs pass through the gastrointestinal tract before being absorbed in the small intestine and metabolised in the liver. To test the efficacy and toxicity of drugs, animal models are often employed; however, they are not suitable for investigating drug-tissue interactions and making reliable predictions, since the human organism differs drastically from animals in terms of absorption, distribution, metabolism and excretion of substances. Likewise, simple static in vitro cell culture systems currently used in preclinical drug screening often do not resemble the native characteristics of biological barriers. Dynamic models, on the other hand, provide in vivo-like cell phenotypes and functionalities that offer great potential for safety and efficacy prediction. Herein, current microfluidic in vitro intestinal and hepatic models are reviewed, namely single- and multi-tissue micro-bioreactors, which are associated with different methods of cell cultivation, i.e., scaffold-based versus scaffold-free.


Assuntos
Hepatócitos , Fígado , Animais , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Técnicas de Cultura de Células , Intestinos , Microfluídica
3.
Nanomaterials (Basel) ; 13(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37368307

RESUMO

Biocompatible gold nanoparticles (AuNPs) are used in wound healing due to their radical scavenging activity. They shorten wound healing time by, for example, improving re-epithelialization and promoting the formation of new connective tissue. Another approach that promotes wound healing through cell proliferation while inhibiting bacterial growth is an acidic microenvironment, which can be achieved with acid-forming buffers. Accordingly, a combination of these two approaches appears promising and is the focus of the present study. Here, 18 nm and 56 nm gold NP (Au) were prepared with Turkevich reduction synthesis using design-of-experiments methodology, and the influence of pH and ionic strength on their behaviour was investigated. The citrate buffer had a pronounced effect on the stability of AuNPs due to the more complex intermolecular interactions, which was also confirmed by the changes in optical properties. In contrast, AuNPs dispersed in lactate and phosphate buffer were stable at therapeutically relevant ionic strength, regardless of their size. Simulation of the local pH distribution near the particle surface also showed a steep pH gradient for particles smaller than 100 nm. This suggests that the healing potential is further enhanced by a more acidic environment at the particle surface, making this strategy a promising approach.

4.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839050

RESUMO

The exposure to inhaled carbon nanotubes (CNT) may have adverse effects on workers upon chronic exposure. In order to assess the toxicity of inhaled nanoparticles in a physiologically relevant manner, an air-liquid interface culture of mono and cocultures of respiratory cells and assessment in reconstructed bronchial and alveolar tissues was used. The effect of CNT4003 reference particles applied in simulated lung fluid was studied in bronchial (Calu-3 cells, EpiAirway™ and MucilAir™ tissues) and alveolar (A549 +/-THP-1 and EpiAlveolar™ +/-THP-1) models. Cytotoxicity, transepithelial electrical resistance, interleukin 6 and 8 secretion, mucociliary clearance and ciliary beating frequency were used as readout parameters. With the exception of increased secretion of interleukin 6 in the EpiAlveolar™ tissues, no adverse effects of CNT4003 particles, applied at doses corresponding to the maximum estimated lifetime exposure of workers, in the bronchial and alveolar models were noted, suggesting no marked differences between the models. Since the doses for whole-life exposure were applied over a shorter time, it is not clear if the interleukin 6 increase in the EpiAlveolar™ tissues has physiological relevance.

5.
Int J Pharm ; 623: 121909, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35697202

RESUMO

This study addressed the need for a flexible (personalizable) production of biologics, allowing their stabilization in the solid state and processing of small batch volumes. Therefore, inkjet printing into vials followed by a gentle vacuum drying step at ambient temperature was investigated by screening different formulations with a 22-full factorial design of experiments regarding printability. Human Serum Albumin (HSA) was used as a model protein in a wide range of concentrations (5 to 50 mg/ml), with (10 w/v%) and without the surfactant polysorbate 80 (PS80). PS80 was identified to positively affect the formulations by increasing the Ohnesorge number and stabilizing the printing process. The dispensed volumes with a target dose of 0.5 mg HSA were dried and analyzed concerning their residual moisture (RM) and protein aggregation. All investigated formulations showed an RM < 10 wt% and no significant induced protein aggregation as confirmed by Size Exclusion Chromatography (<2.5%) and Dynamic Light Scattering (Aggregation Index ≤ 2.5). Additionally, long-term printability and the available final dose after reconstitution were investigated for two optimized formulations. A promising formulation providing ∼93% of the targeted dose and a reconstitution time of 30 s was identified.


Assuntos
Produtos Biológicos , Agregados Proteicos , Excipientes/química , Liofilização/métodos , Humanos , Polissorbatos
6.
Nanomaterials (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070004

RESUMO

Topical drug administration to the oral mucosa proves to be a promising treatment alternative for inflammatory diseases. However, disease-related changes in the cell barrier must be considered when developing such delivery systems. This study aimed at investigating the changes in the lining mucosa caused by inflammation and evaluating the consequences on drug delivery systems such as nanostructured lipid carriers (NLC). For this, TR146 cells were treated with inflammatory cytokines and bacterial components. Cell viability and integrity, reactive oxygen species (ROS), and interleukin (IL)-8 release were used as endpoints to assess inflammation. Translocation of phosphatidylserine, cytoskeletal arrangement, opening of desmosomes, and cell proliferation were examined. Transport studies with NLC were performed considering active and passive pathways. The results showed that IL-1ß and tumor necrosis factor α induced inflammation by increasing IL-8 and ROS production (22-fold and 2-fold). Morphologically, loss of cell-cell connections and formation of stress fibers and hyperplasia were observed. The charge of the cell membrane shifted from neutral to negative, which increased the absorption of NLC due to the repulsive interactions between the hydrophobic negative particles and the cell membrane on the one hand, and interactions with lipophilic membrane proteins such as caveolin on the other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA