RESUMO
AIMS: This 3-part, randomised, phase 1 first-in-human study (NCT03436316) investigated the safety, tolerability and pharmacokinetics (PK) of AZD8154, a dual phosphoinositide 3-kinase (PI3K) γδ inhibitor developed as a novel inhaled anti-inflammatory treatment for respiratory disease. METHODS: Healthy men, and women of nonchildbearing potential, were enrolled to receive single and multiple ascending inhaled doses of AZD8154 in parts 1 and 3 of the study, respectively, while part 2 characterised the systemic PK after a single intravenous (IV) dose. In part 1, participants received 0.1-7.7 mg AZD8154 in 6 cohorts. In part 2, participants were given 0.15 mg AZD8154 as an IV infusion. In part 3, AZD8154 was given in 3 cohorts of 0.6, 1.8 and 3.1 mg, with a single dose on Day 1 followed by repeated once-daily doses on Days 4-12. RESULTS: In total, 78 volunteers were randomised. All single inhaled, single IV and multiple inhaled doses were shown to be well tolerated without any safety concerns. A population PK model, using nonlinear mixed-effect modelling, was developed to describe the PK of AZD8154. The terminal mean half-life of AZD8154 was 18.0-32.0 hours. The geometric mean of the absolute pulmonary bioavailability of AZD8154 via the inhaled route was 94.1%. CONCLUSION: AZD8154 demonstrated an acceptable safety profile, with no reports of serious adverse events and no clinically significant drug-associated safety concerns reported in healthy volunteers. AZD8154 demonstrated prolonged lung retention and a half-life supporting once-daily dosing.
Assuntos
Fosfatidilinositol 3-Quinases , Área Sob a Curva , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinéticaRESUMO
Muscle atrophy and cachexia are common comorbidities among patients suffering from cancer, chronic obstructive pulmonary disease, and several other chronic diseases. The peptide hormone ghrelin exerts pleiotropic effects including the stimulation of growth hormone secretion and subsequent increase of insulin-like growth factor-1 levels, an important mediator of muscle growth and repair. Ghrelin also acts on inflammation, appetite, and adipogenesis and therefore has been considered a promising therapeutic target for catabolic conditions. We previously reported on the synthesis and properties of an indane based series of ghrelin receptor full agonists which led to a sustained increase of insulin-like growth factor-1 in a dog pharmacodynamic study. Herein we report on the identification of a series of pyrrolidine or piperidine based full agonists and attempted optimization to give compounds with profiles suitable for progression as clinical candidates.