Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 65(12): 2645-2659, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37929676

RESUMO

Maize (Zea mays) requires substantial amounts of nitrogen, posing a challenge for its cultivation. Recent work discovered that some ancient Mexican maize landraces harbored diazotrophic bacteria in mucilage secreted by their aerial roots. To see if this trait is retained in modern maize, we conducted a field study of aerial root mucilage (ARM) in 258 inbred lines. We observed that ARM secretion is common in modern maize, but the amount significantly varies, and only a few lines have retained the nitrogen-fixing traits found in ancient landraces. The mucilage of the high-ARM inbred line HN5-724 had high nitrogen-fixing enzyme activity and abundant diazotrophic bacteria. Our genome-wide association study identified 17 candidate genes associated with ARM across three environments. Knockouts of one candidate gene, the subtilase family gene ZmSBT3, confirmed that it negatively regulates ARM secretion. Notably, the ZmSBT3 knockout lines had increased biomass and total nitrogen accumulation under nitrogen-free culture conditions. High ARM was associated with three ZmSBT3 haplotypes that were gradually lost during maize domestication, being retained in only a few modern inbred lines such as HN5-724. In summary, our results identify ZmSBT3 as a potential tool for enhancing ARM, and thus nitrogen fixation, in maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Zea mays/microbiologia , Nitrogênio , Polissacarídeos , Bactérias
2.
Heliyon ; 8(12): e11867, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36471842

RESUMO

Wugong Mountain meadow landscape is well-known both at home and abroad because of its ornamental value. Our study aimed to comprehensively evaluate the function of soil and water conservation at different altitudes of Wugong Mountain meadow soil. The hydro-physical characteristics, including the soil bulk density, porosity, water content, water holding capacity, and permeability of meadow soil at 1600 m-1900 m altitudes, were analyzed. The results showed that the mountain meadow soil's hydro-physiological characteristics and water conservation function significantly differed with altitude. However, the trend of each index did not follow the same law with altitude change. There was a decrease in bulk density of the soil from 1700 m to 1900 m, but a significant increase in porosity and water-holding capacity. Despite the higher porosity and water holding capacity found at 1600 m than at 1700 m and 1800 m, a similar bulk density was found at 1600 m as 1700 m. In addition, the bulk density in the 0-20 cm layer was lower than that in the 20-40 cm layer, while the porosity and water-holding capacity were higher. A higher sequence of soil water conservation capacity was found in soil layers 0-20 cm depth at 1900, 1600, 1800, and 1700 m; in soil layers 20-40 cm depth, it was at 1900, 1800, 1700, and 1600 m. The study found that the sequence of the comprehensive performance of soil water conservation function was at 1900, 1600, 1800, and 1700 m altitudes in the Wugong mountain meadow area. Our comprehensive study of soil water conservation capacity provides a theoretical basis for the rational use of mountain meadow resources in subtropical regions.

3.
Life (Basel) ; 12(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36556406

RESUMO

Leaves are essential vegetative organs of plants. Studying the variations in leaf nutrient content and microbial communities of male and female plants at reproductive stages helps us understand allocation and adaptation strategies. This study aimed to determine the nutrient characteristics and microbial differences in the leaves of male and female Idesia polycarpa at reproductive stages. Seven-year-old female and male plants were used as test materials in this experiment. The samples were collected at three stages: flowering (May), fruit matter accumulation (July), and fruit ripening (October). The nitrogen (TN), phosphorus (TP), potassium (TK), carbon (TC), and the pH of the female and male leaves were analyzed. In addition, the leaf microbial diversity and differential metabolites were determined using the Illumina high-throughput sequencing method and the ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method at the reproductive developmental stages. This study found that male and female plant leaves had different TN and TK contents over time but no difference in TC and TP content. The significant differences in bacterial diversity between male and female plants and the richness of the fungi of male plants at the flowering and fruit maturity stages were observed. Proteobacteria, Pseudomonadaceae, Ascomycota, and Aspergillus were the dominant bacteria and fungi in the Idesia polycarpa leaves. The presence of microorganisms differed in the two sexes in different periods. Alphaproteobacteria and Sordariomycetes were the indicator groups for male leaves, and Pseudomonas and Sordariomycetes were the indicator groups for female leaves. Significant differences in phenolic acid were found between male and female leaves. A KEGG enrichment analysis revealed that differential metabolites were enriched in metabolic pathways, amino acid biosynthesis, and the nucleotide metabolism. According to a correlation analysis, leaf TK and TP were strongly correlated with endophytic bacteria abundance and differential metabolite composition. This study revealed the changes in substances and microorganisms in the leaves of male and female plants in their reproductive stages. It provides a theoretical basis for developing and utilizing the leaves of Idesia polycarpa and for field management.

4.
Life (Basel) ; 12(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36013316

RESUMO

Meadow soil is a vital ecosystem component and can be influenced by meadow vegetation. Evaluating soil quality in mountain meadows subjected to different levels of tourism disturbance is essential for scientific research, ecological restoration, and sustainable management. This study aimed to evaluate meadow soil quality at different tourism-disturbance levels and attempted to establish a minimum data set (MDS) with compatible indicators for soil quality assessment of subtropical mountain meadows. We analyzed fifteen soil physical, chemical, and biological indicators in control check (CK), light disturbance (LD), medium disturbance (MD), and severe disturbance (SD) meadow areas in Wugong Mountain, west of Jiangxi, China. In addition, a soil quality index (SQI) was determined using the established MDS based on the integrated soil quality index. Average soil permeability, soil pH, available nitrogen (AN), available phosphorus (AP), and number of fungal OTUs were finally introduced into the MDS to evaluate meadow soil quality at different tourism-disturbance levels. The study found that the soil of the Wugong Mountain meadow was acidic, the bulk density was loose, and the nutrient content was rich. Additionally, SQI decreased with increase in tourism-disturbance level. The mean SQI values of the Wugong Mountain meadow areas were: CK, 0.612; LD, 0.493; MD, 0.448; and SD, 0.416. Our results demonstrate that the SQI based on the MDS method could be a valuable tool with which to indicate the soil quality of mountain meadow areas, and the SQI can be regarded as a primary indicator of ecological restoration and sustainable management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA