RESUMO
2-Chloro-4-sulfonylquinazolines undergo functional group swap when treated with an azide nucleophile: 1) the azide replaces the sulfonyl group at the C4 position; 2) the intrinsic azide-tetrazole tautomeric equilibrium directs the nucleofugal sulfinate from the first step to replace chloride at the C2 position. This transformation is effective with quinazolines bearing electron-rich substituents. Therefore, the title transformations are demonstrated on the 6,7-dimethoxyquinazoline core, which is present in pharmaceutically active substances. The methodology application is showcased by transforming the obtained 4-azido-6,7-dimethoxy-2-sulfonylquinazolines into the α1-adrenoceptor blockers terazosin and prazosin by further C2-selective SNAr reaction and azide reduction.
RESUMO
Two pathways toward 6-selanyl-2-triazolylpurine derivatives were designed. The first method involved the synthesis of 2-chloro-6-selanylpurine derivatives, further SNAr reaction with NaN3, and following CuAAC using different alkynes. The second method was based on the synthesis of 2,6-bistriazolylpurine derivatives as starting materials followed by SNAr reaction with commercial or in situ generated selenols as nucleophiles. A series of 2-chloro-6-selanylpurine derivatives were obtained in yields up to 84%. It was found that in the latter compounds, 6-selanyl moiety was the better leaving group compared to 2-chlorosubstituent in SNAr reactions. On the other hand, the SNAr reaction between 2,6-bistriazolylpurines and selenols or diselenides was successful, and 13 examples of 6-selanyl-2-triazolylpurine derivatives were obtained in yields up to 87%. This direct approach for the Se-C bond formation proved the ability of the 1,2,3-triazolyl ring at the C6 position of purine to act as a good leaving group.
RESUMO
Here, we describe detailed synthetic protocols for preparation of 6-amino/thio-2-triazolylpurine ribonucleosides. First, 9-(2',3',5'-tri-O-acetyl-ß-D-ribofuranosyl)-2,6-diazido-9H-purine, to be used as a key starting material, is synthesized in an SN Ar reaction with NaN3 starting from commercially available 9-(2',3',5'-tri-O-acetyl-ß-D-ribofuranosyl)-2,6-dichloro-9H-purine. Next, 2,6-bis-triazolylpurine ribonucleoside is obtained in a CuAAC reaction between diazidopurine derivative and phenyl acetylene, and used in SN Ar reactions with N- and S-nucleophiles. In these reactions, the triazolyl ring at the purine C6 position acts as a good leaving group. Cleavage of acetyl protecting groups from the ribosyl moiety is achieved in presence of piperidine. In the SN Ar reaction with amino acid derivatives, the acetyl groups remain intact. Moreover, 9-(2',3',5'-tri-O-acetyl-ß-D-ribofuranosyl)-2,6-diazido-9H-purine is selectively reduced at the C6 position using a CuSO4 ·5H2 O/sodium ascorbate system. This provides a straightforward approach for synthesis of 9-(2',3',5'-tri-O-acetyl-ß-D-ribofuranosyl)-6-amino-2-azido-9H-purine. © 2021 Wiley Periodicals LLC Basic Protocol 1: Synthesis of 6-amino-2-triazolylpurine ribonucleosides Basic Protocol 2: Synthesis of 6-thio-2-triazolylpurine ribonucleosides Basic Protocol 3: Synthesis of 6-amino-2-azidopurine ribonucleoside.
Assuntos
Ribonucleosídeos , Nucleosídeos de PurinaRESUMO
5-Arylthio-tetrazolo[1,5-c]quinazolines (tautomers of 2-arylthio-4-azido-quinazolines) undergo facile nucleophilic aromatic substitution reactions with amines, alcohols and alkylthiols. This, combined with the recently reported arylsulfanyl group dance, provides straightforward access to 4-azido-2-N-, O-, S-substituted quinazolines and/or their tetrazolo tautomers from commercially available 2,4-dichloroquinazoline. The azidoazomethine-tetrazole tautomeric equilibrium and the electron-withdrawing character of the fused tetrazolo system plays a central role in the developed transformations. 5-Amino-substituted tetrazolo[1,5-c]quinazolines undergo media-controlled tautomeric equilibrium, which permits them to demonstrate the reactivity traditionally associated with the azido substituent. Furthermore, a method for 5-O-substitited tetrazolo[1,5-a]quinazolines from 2,4-diazidoquinazoline was developed during the structural elucidation of the substitution products. The developed methodology will facilitate medicinal chemistry investigations into quinazoline derivatives and the discovered fluorescent properties of some of the products (e.g., 4-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-(4-methylpiperazin-1-yl)quinazoline: λem. = 461 nm, ΦDCM = 0.89) could serve as a starting point for their further applications in analytical and materials science.
RESUMO
A comprehensive photophysical study of a series of purines, doubly decorated at C2 and C6 positions with identical fragments ranging from electron acceptor to donor groups of different strengths, is presented. The asymmetry of substitutions creates a unique molecular D-A-D' structure possessing two independent electronic charge transfer (CT) systems attributed to each fragment and exhibiting dual-band fluorescence. Moreover, the inherent property of coordination of metal ions by purines was enriched due to a presence of nearby triazoles used as spacers for donor or acceptor fragments. New molecules present a bidentate coordination mode, which makes the assembly of several ligands with one metal cation possible. This property was exploited to create a new concept of a ratiometric chemical fluorescence sensor involving the photoinduced electron transfer between branches of different ligands as a mechanism of fluorescence modulation.