Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4598, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933514

RESUMO

Explorations of symmetry and topology have led to important breakthroughs in quantum optics, but much richer behaviors arise from the non-Hermitian nature of light-matter interactions. A high-reflectivity, non-Hermitian optical mirror can be realized by a two-dimensional subwavelength array of neutral atoms near the cooperative resonance associated with the collective dipole modes. Here we show that exceptional points develop from a nondefective degeneracy by lowering the crystal symmetry of a square atomic lattice, and dispersive bulk Fermi arcs that originate from exceptional points are truncated by the light cone. From its nontrivial energy spectra topology, we demonstrate that the geometry-dependent non-Hermitian skin effect emerges in a ribbon geometry. Furthermore, skin modes localized at a boundary show a scale-free behavior that stems from the long-range interaction and whose mechanism goes beyond the framework of non-Bloch band theory. Our work opens the door to the study of the interplay among non-Hermiticity, topology, and long-range interaction.

2.
Sci Rep ; 9(1): 5804, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967605

RESUMO

We theoretically investigate the super- and sub-radiance from the resonant dipole-dipole interactions (RDDI) in a confined two-dimensional (2D) reservoir. The distinctive feature of 2D RDDI shows qualitatively and quantitatively different long-range behavior from RDDI in free space. We investigate the collective radiation properties of the singly-excited symmetric state under this 2D RDDI. This state also allows subradiant decays in much longer distances than the transition wavelength, showing longrange atom-atom correlations. We further study the dynamics of the subradiant states which can be accessed by imprinting spatially dependent phases on the atomic arrays. Our results demonstrate rich opportunities in engineering light-matter interactions in a confined 2D reservoir, and hold promise in applications of quantum light storage and single-excitation state manipulations.

3.
Sci Rep ; 8(1): 9570, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934557

RESUMO

We theoretically investigate the light scattering of super- and subradiant states of an atomic ring prepared by single excitation with a photon which carries an orbital angular momentum (OAM). For excitations with linear polarizations, the helical phase imprinted (HPI) atomic ring presents a discrete C4 rotational symmetry when number of atoms N = 4n with integers n, while for circular polarizations with arbitrary N, the continuous and C N symmetries emerge for the super- and subradiant modes, respectively. The HPI superradiant modes predominantly scatter photons in the forward-backward direction, and the forward scattering can be further enhanced as atomic rings are stacked along the excitation direction. The HPI subradiant modes then preferentially scatter photons in the transversal directions, and when rings are stacked concentrically and on a plane, crossover from sub- to superradiance is observed which leads to splitting and localization of the far-field scattering patterns in the polar angle. The HPI super- and subradiant states are thus detectable through measuring the far-field radiation patterns, which further allow quantum storage and detection of a single photon with an OAM.

4.
Sci Rep ; 8(1): 7163, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740163

RESUMO

We theoretically investigate the far-field scattering properties of multiphoton super- and subradiant states which can be prepared by multiphoton excitations with orbital angular momentum (OAM). Due to multiphoton interference, the far-field patterns of the subradiant modes show directional scattering along the excitation direction or transverse scattering with number of peaks equal to the number of atoms. When more atoms are involved, we consider structures of stacked and concentric rings, which respectively show enhanced directional scattering and smoothed emission patterns. Our scheme gives insights to prepare many-body subradiant states, and is potentially applicable to quantum storage of multiphoton with OAM. By designing atomic spatial distributions, these cooperative states can tailor the far-field emission properties, which is useful for light collections and quantum information manipulations.

5.
Phys Rev Lett ; 98(3): 030403, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17358664

RESUMO

For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B field) is not axially symmetric, the difference of the two becomes surprisingly conserved. In this Letter we investigate the relationship between the values of the sum or difference angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of magnetically trapped atomic quantum gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA