Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704069

RESUMO

The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/química , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Animais , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular
2.
PLoS One ; 16(1): e0245358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444377

RESUMO

The toll-like receptor 5 (TLR5) is the most conserved important pattern recognition receptors (PRRs) often stimulated by bacterial flagellins and plays a major role in the first-line defense against invading pathogenic bacteria and in immune homeostasis. Experimental crystallographic studies have shown that the extracellular domain (ECD) of TLR5 recognizes flagellin of bacteria and functions as a homodimer in model organism zebrafish. However, no structural information is available on TLR5 functionality in the major carp Cirrhinus mrigala (mrigala) and its interaction with bacterial flagellins. Therefore, the present study was undertaken to unravel the structural basis of TLR5-flagellin recognition in mrigala using structural homodimeric TLR5-flagellin complex of zebrafish as reference. Integrative structural modeling and molecular dynamics simulations were employed to explore the structural and mechanistic details of TLR5 recognition. Results from structural snapshots of MD simulation revealed that TLR5 consistently formed close interactions with the three helices of the D1 domain in flagellin on its lateral side mediated by several conserved amino acids. Results from the intermolecular contact analysis perfectly substantiate with the findings of per residue-free energy decomposition analysis. The differential recognition mediated by flagellin to TLR5 in mrigala involves charged residues at the interface of binding as compared to the zebrafish complex. Overall our results shows TLR5 of mrigala involved in innate immunity specifically recognized a conserved site on flagellin which advocates the scientific community to explore host-specific differences in receptor activation.


Assuntos
Carpas/metabolismo , Proteínas de Peixes/metabolismo , Flagelina/metabolismo , Salmonella/metabolismo , Receptor 5 Toll-Like/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Receptor 5 Toll-Like/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA