Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(28): 17617-17627, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715247

RESUMO

Layered zinc hydroxides (LZHs) with the general formula (Zn2+) x (OH-)2x-my (A m-) y ·nH2O (A m- = Cl-, NO3 -, ac-, SO4 2-, etc) are considered as useful precursors for the fabrication of functional ZnO nanostructures. Here, we report the synthesis and structure characterization of the hitherto unknown "binary" representative of the LZH compound family, Zn5(OH)10·2H2O, with A m- = OH-, x = 5, y = 2, and n = 2. Zn5(OH)10·2H2O was afforded quantitatively by pressurizing mixtures of ε-Zn(OH)2 (wulfingite) and water to 1-2 GPa and applying slightly elevated temperatures, 100-200 °C. The monoclinic crystal structure was characterized from powder X-ray diffraction data (space group C2/c, a = 15.342(7) Å, b = 6.244(6) Å, c = 10.989(7) Å, ß = 100.86(1)°). It features neutral zinc hydroxide layers, composed of octahedrally and tetrahedrally coordinated Zn ions with a 3:2 ratio, in which H2O is intercalated. The interlayer d(200) distance is 7.53 Å. The H-bond structure of Zn5(OH)10·2H2O was analyzed by a combination of infrared/Raman spectroscopy, computational modeling, and neutron powder diffraction. Interlayer H2O molecules are strongly H-bonded to five surrounding OH groups and appear orientationally disordered. The decomposition of Zn5(OH)10·2H2O, which occurs thermally between 70 and 100 °C, was followed in an in situ transmission electron microscopy study and ex situ annealing experiments. It yields initially 5-15 nm sized hexagonal w-ZnO crystals, which, depending on the conditions, may intergrow to several hundred nm-large two-dimensional, flakelike crystals within the boundary of original Zn5(OH)10·2H2O particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA