Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Science ; 383(6687): 1104-1111, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38422185

RESUMO

The eradication of the viral reservoir represents the major obstacle to the development of a clinical cure for established HIV-1 infection. Here, we demonstrate that the administration of N-803 (brand name Anktiva) and broadly neutralizing antibodies (bNAbs) results in sustained viral control after discontinuation of antiretroviral therapy (ART) in simian-human AD8 (SHIV-AD8)-infected, ART-suppressed rhesus macaques. N-803+bNAbs treatment induced immune activation and transient viremia but only limited reductions in the SHIV reservoir. Upon ART discontinuation, viral rebound occurred in all animals, which was followed by durable control in approximately 70% of all N-803+bNAb-treated macaques. Viral control was correlated with the reprogramming of CD8+ T cells by N-803+bNAb synergy. Thus, complete eradication of the replication-competent viral reservoir is likely not a prerequisite for the induction of sustained remission after discontinuation of ART.


Assuntos
Antirretrovirais , Proteínas Recombinantes de Fusão , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Anticorpos Amplamente Neutralizantes/administração & dosagem , Linfócitos T CD8-Positivos/virologia , Imunoterapia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Carga Viral , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Indução de Remissão , Quimioterapia Combinada
2.
Aging Cell ; 22(5): e13806, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967480

RESUMO

Accumulation of senescent cells (SNCs) with a senescence-associated secretory phenotype (SASP) has been implicated as a major source of chronic sterile inflammation leading to many age-related pathologies. Herein, we provide evidence that a bifunctional immunotherapeutic, HCW9218, with capabilities of neutralizing TGF-ß and stimulating immune cells, can be safely administered systemically to reduce SNCs and alleviate SASP in mice. In the diabetic db/db mouse model, subcutaneous administration of HCW9218 reduced senescent islet ß cells and SASP resulting in improved glucose tolerance, insulin resistance, and aging index. In naturally aged mice, subcutaneous administration of HCW9218 durably reduced the level of SNCs and SASP, leading to lower expression of pro-inflammatory genes in peripheral organs. HCW9218 treatment also reverted the pattern of key regulatory circadian gene expression in aged mice to levels observed in young mice and impacted genes associated with metabolism and fibrosis in the liver. Single-nucleus RNA Sequencing analysis further revealed that HCW9218 treatment differentially changed the transcriptomic landscape of hepatocyte subtypes involving metabolic, signaling, cell-cycle, and senescence-associated pathways in naturally aged mice. Long-term survival studies also showed that HCW9218 treatment improved physical performance without compromising the health span of naturally aged mice. Thus, HCW9218 represents a novel immunotherapeutic approach and a clinically promising new class of senotherapeutic agents targeting cellular senescence-associated diseases.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Camundongos , Animais , Senescência Celular/genética , Envelhecimento , Inflamação , Imunoterapia , Fenótipo
3.
ACS Appl Mater Interfaces ; 14(6): 7731-7740, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35128928

RESUMO

Electrochemical CO2 reduction (ECR) promises the replacement of fossil fuels as the source of feedstock chemicals and seasonal storage of renewable energy. While much progress has been made in catalyst development and electrochemical reactor design, few studies have addressed the effect of catalyst integration on device performance. Using a microfluidic gas diffusion electrolyzer, we systematically studied the effect of thickness and the morphology of electron beam (EB) and magnetron-sputtered (MS) Cu catalyst coatings on ECR performance. We observed that EB-Cu outperforms MS-Cu in current density, selectivity, and energy efficiency, with 400 nm thick catalyst coatings performing the best. The superior performance of EB-Cu catalysts is assigned to their faceted surface morphology and sharper Cu/gas diffusion layer interface, which increases their hydrophobicity. Tests in a large-scale zero-gap electrolyzer yielded similar product selectivity distributions with an ethylene Faradaic efficiency of 39% at 200 mA/cm2, demonstrating the scalability for industrial ECR applications.

4.
Mol Ther ; 30(3): 1171-1187, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051615

RESUMO

Therapy induced senescence (TIS) in tumors and TIS cancer cells secrete proinflammatory senescence-associated secretory phenotype (SASP) factors. SASP factors promote TIS cancer cells to re-enter the growth cycle with stemness characteristics, resulting in chemo-resistance and disease relapse. Herein, we show that the immunotherapeutic HCW9218, comprising transforming growth factor-ß (TGF-ß) receptor II and interleukin (IL)-15/IL-15 receptor α domains, enhances metabolic and cytotoxic activities of immune cells and reduces TIS tumor cells in vivo to improve the efficacy of docetaxel and gemcitabine plus nab-paclitaxel against B16F10 melanoma and SW1990 pancreatic tumors, respectively. Mechanistically, HCW9218 treatment reduces the immunosuppressive tumor microenvironment and enhances immune cell infiltration and cytotoxicity in the tumors to eliminate TIS cancer cells. Immuno-depletion analysis suggests that HCW9218-activated natural killer cells play a pivotal role in TIS cancer cell removal. HCW9218 treatment following docetaxel chemotherapy further enhances efficacy of tumor antigen-specific and anti-programmed death-ligand 1 (PD-L1) antibodies in B16F10 tumor-bearing mice. We also show that HCW9218 treatment decreases TIS cells and lowers SASP factors in off-target tissues caused by chemotherapy of tumor-bearing mice. Collectively, HCW9218 has the potential to significantly enhance anti-tumor efficacy of chemotherapy, therapeutic antibodies, and checkpoint blockade by eliminating TIS cancer cells while reducing TIS-mediated proinflammatory side effects in normal tissues.


Assuntos
Antígeno B7-H1 , Células Matadoras Naturais , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Senescência Celular , Docetaxel/metabolismo , Docetaxel/farmacologia , Imunoterapia/métodos , Células Matadoras Naturais/metabolismo , Camundongos , Microambiente Tumoral
5.
Cancer Immunol Res ; 9(9): 1071-1087, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244297

RESUMO

Natural killer (NK) cells are a promising cellular therapy for cancer, with challenges in the field including persistence, functional activity, and tumor recognition. Briefly, priming blood NK cells with recombinant human (rh)IL-12, rhIL-15, and rhIL-18 (12/15/18) results in memory-like NK cell differentiation and enhanced responses against cancer. However, the lack of available, scalable Good Manufacturing Process (GMP)-grade reagents required to advance this approach beyond early-phase clinical trials is limiting. To address this challenge, we developed a novel platform centered upon an inert tissue factor scaffold for production of heteromeric fusion protein complexes (HFPC). The first use of this platform combined IL-12, IL-15, and IL-18 receptor engagement (HCW9201), and the second adds CD16 engagement (HCW9207). This unique HFPC expression platform was scalable with equivalent protein quality characteristics in small- and GMP-scale production. HCW9201 and HCW9207 stimulated activation and proliferation signals in NK cells, but HCW9207 had decreased IL-18 receptor signaling. RNA sequencing and multidimensional mass cytometry revealed parallels between HCW9201 and 12/15/18. HCW9201 stimulation improved NK cell metabolic fitness and resulted in the DNA methylation remodeling characteristic of memory-like differentiation. HCW9201 and 12/15/18 primed similar increases in short-term and memory-like NK cell cytotoxicity and IFNγ production against leukemia targets, as well as equivalent control of leukemia in NSG mice. Thus, HFPCs represent a protein engineering approach that solves many problems associated with multisignal receptor engagement on immune cells, and HCW9201-primed NK cells can be advanced as an ideal approach for clinical GMP-grade memory-like NK cell production for cancer therapy.


Assuntos
Interleucina-12/farmacologia , Interleucina-15/farmacologia , Interleucina-18/farmacologia , Células Matadoras Naturais/imunologia , Leucemia/terapia , Animais , Linhagem Celular Tumoral , Humanos , Memória Imunológica/efeitos dos fármacos , Leucemia/imunologia , Camundongos , Receptores de Células Matadoras Naturais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Indução de Remissão , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Ther ; 29(10): 2949-2962, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34091051

RESUMO

Advances in immunostimulatory and anti-immunosuppressive therapeutics have revolutionized cancer treatment. However, novel immunotherapeutics with these dual functions are not frequently reported. Here we describe the creation of a heterodimeric bifunctional fusion molecule, HCW9218, constructed using our soluble tissue factor (TF)-based scaffold technology. This complex comprises extracellular domains of the human transforming growth factor-ß (TGF-ß) receptor II and a human interleukin-15 (IL-15)/IL-15 receptor α complex. HCW9218 can be readily expressed in CHO cells and purified using antibody-based affinity chromatography in a large-scale manufacturing setting. HCW9218 potently activates mouse natural killer (NK) cells and CD8+ T cells in vitro and in vivo to enhance cell proliferation, metabolism, and antitumor cytotoxic activities. Similarly, human immune cells become activated with increased cytotoxicity following incubation with HCW9218. This fusion complex also exhibits TGF-ß neutralizing activity in vitro and sequesters plasma TGF-ß in vivo. In a syngeneic B16F10 melanoma model, HCW9218 displayed strong antitumor activity mediated by NK cells and CD8+ T cells and increased their infiltration into tumors. Repeat-dose subcutaneous administration of HCW9218 was well tolerated by mice, with a half-life sufficient to provide long-lasting biological activity. Thus, HCW9218 may serve as a novel therapeutic to simultaneously provide immunostimulation and lessen immunosuppression associated with tumors.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Interleucina-15/genética , Células Matadoras Naturais/metabolismo , Melanoma Experimental/tratamento farmacológico , Receptor do Fator de Crescimento Transformador beta Tipo II/química , Receptores de Interleucina-15/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Injeções Subcutâneas , Interleucina-15/metabolismo , Melanoma Experimental/imunologia , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Interleucina-15/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Fator de Crescimento Transformador beta/sangue , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Commun ; 11(1): 5856, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203886

RESUMO

The electroreduction of carbon dioxide offers a promising avenue to produce valuable fuels and chemicals using greenhouse gas carbon dioxide as the carbon feedstock. Because industrial carbon dioxide point sources often contain numerous contaminants, such as nitrogen oxides, understanding the potential impact of contaminants on carbon dioxide electrolysis is crucial for practical applications. Herein, we investigate the impact of various nitrogen oxides, including nitric oxide, nitrogen dioxide, and nitrous oxide, on carbon dioxide electroreduction on three model electrocatalysts (i.e., copper, silver, and tin). We demonstrate that the presence of nitrogen oxides (up to 0.83%) in the carbon dioxide feed leads to a considerable Faradaic efficiency loss in carbon dioxide electroreduction, which is caused by the preferential electroreduction of nitrogen oxides over carbon dioxide. The primary products of nitrogen oxides electroreduction include nitrous oxide, nitrogen, hydroxylamine, and ammonia. Despite the loss in Faradaic efficiency, the electrocatalysts exhibit similar carbon dioxide reduction performances once a pure carbon dioxide feed is restored, indicating a negligible long-term impact of nitrogen oxides on the catalytic properties of the model catalysts.

8.
Nat Biotechnol ; 36(8): 707-716, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985479

RESUMO

Adoptive cell therapy (ACT) with antigen-specific T cells has shown remarkable clinical success; however, approaches to safely and effectively augment T cell function, especially in solid tumors, remain of great interest. Here we describe a strategy to 'backpack' large quantities of supporting protein drugs on T cells by using protein nanogels (NGs) that selectively release these cargos in response to T cell receptor activation. We designed cell surface-conjugated NGs that responded to an increase in T cell surface reduction potential after antigen recognition and limited drug release to sites of antigen encounter, such as the tumor microenvironment. By using NGs that carried an interleukin-15 super-agonist complex, we demonstrated that, relative to systemic administration of free cytokines, NG delivery selectively expanded T cells 16-fold in tumors and allowed at least eightfold higher doses of cytokine to be administered without toxicity. The improved therapeutic window enabled substantially increased tumor clearance by mouse T cell and human chimeric antigen receptor (CAR)-T cell therapy in vivo.


Assuntos
Sistemas de Liberação de Medicamentos , Imunoterapia Adotiva , Nanopartículas , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Animais , Proliferação de Células , Citocinas/administração & dosagem , Humanos , Interleucina-15/administração & dosagem , Antígenos Comuns de Leucócito/imunologia , Ativação Linfocitária , Camundongos , Linfócitos T/citologia , Linfócitos T/metabolismo , Microambiente Tumoral
9.
Lancet Oncol ; 19(5): 694-704, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29628312

RESUMO

BACKGROUND: Immunotherapy with PD-1 or PD-L1 blockade fails to induce a response in about 80% of patients with unselected non-small cell lung cancer (NSCLC), and many of those who do initially respond then develop resistance to treatment. Agonists that target the shared interleukin-2 (IL-2) and IL-15Rßγ pathway have induced complete and durable responses in some cancers, but no studies have been done to assess the safety or efficacy of these agonists in combination with anti-PD-1 immunotherapy. We aimed to define the safety, tolerability, and activity of this drug combination in patients with NSCLC. METHODS: In this non-randomised, open-label, phase 1b trial, we enrolled patients (aged ≥18 years) with previously treated histologically or cytologically confirmed stage IIIB or IV NSCLC from three academic hospitals in the USA. Key eligibility criteria included measurable disease, eligibility to receive anti-PD-1 immunotherapy, and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients received the anti-PD-1 monoclonal antibody nivolumab intravenously at 3 mg/kg (then 240 mg when US Food and Drug Administration [FDA]-approved dosing changed) every 14 days (either as new treatment or continued treatment at the time of disease progression) and the IL-15 superagonist ALT-803 subcutaneously once per week on weeks 1-5 of four 6-week cycles for 6 months. ALT-803 was administered at one of four escalating dose concentrations: 6, 10, 15, or 20 µg/kg. The primary endpoint was to define safety and tolerability and to establish a recommended phase 2 dose of ALT-803 in combination with nivolumab. Analyses were per-protocol and included any patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, number NCT02523469; phase 2 enrolment of patients is ongoing. FINDINGS: Between Jan 18, 2016, and June 28, 2017, 23 patients were enrolled and 21 were treated at four dose levels of ALT-803 in combination with nivolumab. Two patients did not receive treatment because of the development of inter-current illness during enrolment, one patient due to leucopenia and one patient due to pulmonary dysfunction. No dose-limiting toxicities were recorded and the maximum tolerated dose was not reached. The most common adverse events were injection-site reactions (in 19 [90%] of 21 patients) and flu-like symptoms (15 [71%]). The most common grade 3 adverse events, occurring in two patients each, were lymphocytopenia and fatigue. A grade 3 myocardial infarction occurred in one patient. No grade 4 or 5 adverse events were recorded. The recommended phase 2 dose of ALT-803 is 20 µg/kg given once per week subcutaneously in combination with 240 mg intravenous nivolumab every 2 weeks. INTERPRETATION: ALT-803 in combination with nivolumab can be safely administered in an outpatient setting. The promising clinical activity observed with the addition of ALT-803 to the regimen of patients with PD-1 monoclonal antibody relapsed and refractory disease shows evidence of anti-tumour activity for a new class of agents in NSCLC. FUNDING: Altor BioScience (a NantWorks company), National Institutes of Health, and Medical University of South Carolina Hollings Cancer Center.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nivolumabe/administração & dosagem , Proteínas/administração & dosagem , Idoso , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/secundário , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Nivolumabe/efeitos adversos , Proteínas/efeitos adversos , Proteínas Recombinantes de Fusão , Fatores de Tempo , Resultado do Tratamento , Estados Unidos
10.
Immunity ; 48(4): 760-772.e4, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29625893

RESUMO

Cerebral malaria is a deadly complication of Plasmodium infection and involves blood brain barrier (BBB) disruption following infiltration of white blood cells. During experimental cerebral malaria (ECM), mice inoculated with Plasmodium berghei ANKA-infected red blood cells develop a fatal CM-like disease caused by CD8+ T cell-mediated pathology. We found that treatment with interleukin-15 complex (IL-15C) prevented ECM, whereas IL-2C treatment had no effect. IL-15C-expanded natural killer (NK) cells were necessary and sufficient for protection against ECM. IL-15C treatment also decreased CD8+ T cell activation in the brain and prevented BBB breakdown without influencing parasite load. IL-15C induced NK cells to express IL-10, which was required for IL-15C-mediated protection against ECM. Finally, we show that ALT-803, a modified human IL-15C, mediates similar induction of IL-10 in NK cells and protection against ECM. These data identify a regulatory role for cytokine-stimulated NK cells in the prevention of a pathogenic immune response.


Assuntos
Interleucina-10/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Proteínas/farmacologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/imunologia , Interleucina-10/biossíntese , Ativação Linfocitária/imunologia , Malária Cerebral/microbiologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes de Fusão
11.
Cancer Res ; 78(11): 3067-3074, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636345

RESUMO

Effector CD8+ T cells conditioned with IL12 during activation mediate enhanced antitumor efficacy after adoptive transfer into lymphodepleted hosts; this is due in part to improved IL7 responsiveness. Therefore, we hypothesized that increasing the intensity or type of lymphodepletion would deplete more IL7-consuming host cells and improve the persistence and antitumor activity of IL12-conditioned CD8+ T cells. Using cyclophosphamide, fludarabine, and total body irradiation (TBI, 6 Gy) either individually or in combination, we found that combined lymphodepletion best enhanced T-cell engraftment in mice. This improvement was strongly related to the extent of leukopenia, as posttransfer levels of donor T cells inversely correlated to host cell counts after lymphodepletion. Despite the improvement in engraftment seen with combination lymphodepletion, dual-agent lymphodepletion did not augment the antitumor efficacy of donor T cells compared with TBI alone. Similarly, IL7 supplementation after TBI and transfer of tumor-reactive T cells failed to improve persistence or antitumor immunity. However, IL15 or IL2 supplementation greatly augmented the persistence and antitumor efficacy of donor tumor-reactive T cells. Our results indicate that the amount of host IL7 induced after single agent lymphodepletion is sufficient to potentiate the expansion and antitumor activity of donor T cells, and that the efficacy of future regimens may be improved by providing posttransfer support with IL2 or IL15.Significance: The relationship between lymphodepletion and cytokine support plays a critical role in determining donor T-cell engraftment and antitumor efficacy. Cancer Res; 78(11); 3067-74. ©2018 AACR.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-15/imunologia , Interleucina-2/imunologia , Transferência Adotiva/métodos , Animais , Linhagem Celular Tumoral , Feminino , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Depleção Linfocítica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia
12.
Cytokine ; 107: 105-112, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452720

RESUMO

ALT-803 is a fusion protein complex consisting of an interleukin (IL)-15 superagonist and a dimeric IL-15 receptor alpha sushi domain IgG1 Fc fusion protein. When administered to mice, ALT-803 is capable of inducing natural killer (NK) and CD8+ T cell proliferation and activation, and effectively promoting potent anti-tumor responses. Currently, ALT-803 is in clinical trials for treatment of various solid tumors and hematological malignancies. In the initial phase of these clinical studies, intravenous (iv) injection was used according to the route used in pre-clinical efficacy studies. In order to evaluate the possible advantage of subcutaneous (sc) injection versus iv injection, this study compared the biological activity of the two treatment regimens of ALT-803 in pre-clinical in vivo models. The pharmacokinetics, immune stimulation, and anti-tumor efficacy of iv and sc injection routes of ALT-803 in C57BL/6 mice were compared. The half-life of ALT-803 was 7.5 h for iv versus 7.7 h for sc with the maximal detected serum concentration of ALT-803 to be 3926 ng/ml at 0.5 h time-point following iv injection versus 495 ng/ml at 16 h post sc injection. Biodistribution studies indicated that sc ALT-803, similarly to iv ALT-803 as previously reported, has a greater tissue distribution and longer residence time in lymphoid tissues compared to recombinant IL-15. Notably, ALT-803 when administered either iv or sc induced comparable proliferation and activation of CD8+ T and NK cells and resulted in similar reductions of tumor burden. A toxicity study of mice receiving multiple injections of ALT-803 for 4 weeks by iv or sc routes revealed equivalent immune-related changes. The gradual absorbance into the blood stream and lower maximal blood levels of ALT-803 in sc-injected mice, along with similar anti-tumor efficacy support the administration of ALT-803 by sc injection in patients with various malignancies and infectious diseases.


Assuntos
Interleucina-15/metabolismo , Proteínas/administração & dosagem , Administração Intravenosa/métodos , Animais , Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Injeções Subcutâneas/métodos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Blood ; 131(23): 2515-2527, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29463563

RESUMO

New therapies for patients with hematologic malignancies who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) are needed. Interleukin 15 (IL-15) is a cytokine that stimulates CD8+ T-cell and natural killer (NK) cell antitumor responses, and we hypothesized this cytokine may augment antileukemia/antilymphoma immunity in vivo. To test this, we performed a first-in-human multicenter phase 1 trial of the IL-15 superagonist complex ALT-803 in patients who relapsed >60 days after allo-HCT. ALT-803 was administered to 33 patients via the IV or subcutaneous (SQ) routes once weekly for 4 doses (dose levels of 1, 3, 6, and 10 µg/kg). ALT-803 was well tolerated, and no dose-limiting toxicities or treatment-emergent graft-versus-host disease requiring systemic therapy was observed in this clinical setting. Adverse events following IV administration included constitutional symptoms temporally related to increased serum IL-6 and interferon-γ. To mitigate these effects, the SQ route was tested. SQ delivery resulted in self-limited injection site rashes infiltrated with lymphocytes without acute constitutional symptoms. Pharmacokinetic analysis revealed prolonged (>96 hour) serum concentrations following SQ, but not IV, injection. ALT-803 stimulated the activation, proliferation, and expansion of NK cells and CD8+ T cells without increasing regulatory T cells. Responses were observed in 19% of evaluable patients, including 1 complete remission lasting 7 months. Thus, ALT-803 is a safe, well-tolerated agent that significantly increased NK and CD8+ T cell numbers and function. This immunostimulatory IL-15 superagonist warrants further investigation to augment antitumor immunity alone and combined with other immunotherapies. This trial was registered at www.clinicaltrials.gov as #NCT01885897.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Interleucina-15/agonistas , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas/uso terapêutico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Neoplasias Hematológicas/imunologia , Humanos , Interleucina-15/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Proteínas/efeitos adversos , Proteínas/farmacocinética , Proteínas Recombinantes de Fusão , Adulto Jovem
14.
J Clin Invest ; 128(2): 876-889, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355843

RESUMO

The presence of persistent, latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models, which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses, which comprise the vast majority of all infected cells, and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here, we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA, but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus, ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus, our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Farmacorresistência Viral , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Adulto , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Técnicas de Cocultura , Epitopos , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Sistema Imunitário , Masculino , Pessoa de Meia-Idade , Ativação Viral , Latência Viral
15.
Blood Adv ; 2(2): 76-84, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29365313

RESUMO

Sequestering of latent HIV in follicular helper T cells within B-cell follicles that largely exclude cytotoxic T cells is a major barrier to cellular immune-based approaches to eradicate HIV. Here, we show that the clinical-grade human interleukin-15 (IL-15) superagonist ALT-803 activates and redirects simian immunodeficiency virus (SIV)-specific CD8+ T cells from the peripheral blood into B-cell follicles. In agreement with the increased trafficking of SIV-specific cytotoxic T cells to sites of cryptic viral replication, lymph nodes of elite controlling macaques contained fewer cells expressing SIV RNA or harboring SIV DNA post-ALT-803 treatment. These data establish ALT-803 as an immunotherapeutic for HIV and other chronic viral pathogens that evade host immunity by persisting in B-cell follicles.


Assuntos
Linfócitos B/virologia , Linfócitos T CD8-Positivos/imunologia , Proteínas/uso terapêutico , Vírus da Imunodeficiência Símia/imunologia , Animais , HIV/efeitos dos fármacos , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Interleucina-15/agonistas , Macaca/virologia , Proteínas Recombinantes de Fusão , Linfócitos T Citotóxicos/imunologia
16.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118125

RESUMO

Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and ß chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.


Assuntos
Proteínas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Modelos Animais de Doenças , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Macaca mulatta , Proteínas Recombinantes de Fusão , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
17.
JCI Insight ; 2(23)2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212951

RESUMO

NK cell activation has been shown to be metabolically regulated in vitro; however, the role of metabolism during in vivo NK cell responses to infection is unknown. We examined the role of glycolysis in NK cell function during murine cytomegalovirus (MCMV) infection and the ability of IL-15 to prime NK cells during CMV infection. The glucose metabolism inhibitor 2-deoxy-ᴅ-glucose (2DG) impaired both mouse and human NK cell cytotoxicity following priming in vitro. Similarly, MCMV-infected mice treated with 2DG had impaired clearance of NK-specific targets in vivo, which was associated with higher viral burden and susceptibility to infection on the C57BL/6 background. IL-15 priming is known to alter NK cell metabolism and metabolic requirements for activation. Treatment with the IL-15 superagonist ALT-803 rescued mice from otherwise lethal infection in an NK-dependent manner. Consistent with this, treatment of a patient with ALT-803 for recurrent CMV reactivation after hematopoietic cell transplant was associated with clearance of viremia. These studies demonstrate that NK cell-mediated control of viral infection requires glucose metabolism and that IL-15 treatment in vivo can reduce this requirement and may be effective as an antiviral therapy.


Assuntos
Citotoxicidade Imunológica/imunologia , Infecções por Herpesviridae/prevenção & controle , Células Matadoras Naturais/imunologia , Muromegalovirus/isolamento & purificação , Actinas/metabolismo , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Glicemia/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citotoxicidade Imunológica/efeitos dos fármacos , Desoxiglucose/farmacologia , Feminino , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Granzimas/metabolismo , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Humanos , Interferon gama/biossíntese , Interleucina-15/agonistas , Interleucina-15/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas/farmacologia , Proteínas/uso terapêutico , Proteínas Recombinantes de Fusão , Carga Viral/efeitos dos fármacos , Ativação Viral , Adulto Jovem
18.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28794022

RESUMO

Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.


Assuntos
Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Infecções por HIV/imunologia , HIV-1/fisiologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/virologia , Animais , Anticorpos Biespecíficos/imunologia , Antígenos CD4/imunologia , Modelos Animais de Doenças , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Macaca mulatta , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Latência Viral
19.
Oncotarget ; 8(27): 44366-44378, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28574833

RESUMO

Interleukin-15 (IL-15) is a potent cytokine that increases CD8+ T and NK cell numbers and function in experimental models. However, obstacles remain in using IL-15 therapeutically, specifically its low potency and short in vivo half-life. To help overcome this, a new IL-15 superagonist complex comprised of an IL-15N72D mutation and IL-15RαSu/Fc fusion (IL-15SA, also known as ALT-803) was developed. IL-15SA exhibits a significantly longer serum half-life and increased in vivo activity against various tumors. Herein, we evaluated the effects of IL-15SA in recipients of allogeneic hematopoietic stem cell transplantation. Weekly administration of IL-15SA to transplant recipients significantly increased the number of CD8+ T cells (specifically CD44+ memory/activated phenotype) and NK cells. Intracellular IFN-γ and TNF-α secretion by CD8+ T cells increased in the IL-15SA-treated group. IL-15SA also upregulated NKG2D expression on CD8+ T cells. Moreover, IL-15SA enhanced proliferation and cytokine secretion of adoptively transferred CFSE-labeled T cells in syngeneic and allogeneic models by specifically stimulating the slowly proliferative and nonproliferative cells into actively proliferating cells.We then evaluated IL-15SA's effects on anti-tumor activity against murine mastocytoma (P815) and murine B cell lymphoma (A20). IL-15SA enhanced graft-versus-tumor (GVT) activity in these tumors following T cell infusion. Interestingly, IL-15 SA administration provided GVT activity against A20 lymphoma cells in the murine donor leukocyte infusion (DLI) model without increasing graft versus host disease. In conclusion, IL-15SA could be a highly potent T- cell lymphoid growth factor and novel immunotherapeutic agent to complement stem cell transplantation and adoptive immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Efeito Enxerto vs Tumor/efeitos dos fármacos , Proteínas/farmacologia , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Transplante de Células-Tronco Hematopoéticas , Interleucina-15/metabolismo , Subunidade alfa de Receptor de Interleucina-15/agonistas , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Contagem de Linfócitos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Recombinantes de Fusão , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transplante Homólogo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Biol Chem ; 291(46): 23869-23881, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650494

RESUMO

IL-15 and its receptor α (IL-15Rα) are co-expressed on antigen-presenting cells, allowing transpresentation of IL-15 to immune cells bearing IL-2RßγC and stimulation of effector immune responses. We reported previously that the high-affinity interactions between an IL-15 superagonist (IL-15N72D) and the extracellular IL-15Rα sushi domain (IL-15RαSu) could be exploited to create a functional scaffold for the design of multivalent disease-targeted complexes. The IL-15N72D·IL-15RαSuFc complex, also known as ALT-803, is a multimeric complex constructed by fusing IL-15N72D·IL-15RαSu to the Fc domain of IgG1. ALT-803 is an IL-15 superagonist complex that has been developed as a potent antitumor immunotherapeutic agent and is in clinical trials. Here we describe the creation of a novel fusion molecule, 2B8T2M, using the ALT-803 scaffold fused to four single chains of the tumor-targeting monoclonal antibody rituximab. This molecule displays trispecific binding activity through its recognition of the CD20 molecule on tumor cells, stimulation via IL-2RßγC displayed on immune effector cells, and binding to Fcγ receptors on natural killer cells and macrophages. 2B8T2M activates natural killer cells to enhance antibody-dependent cellular cytotoxicity, mediates complement-dependent cytotoxicity, and induces apoptosis of B-lymphoma cells. Compared with rituximab, 2B8T2M exhibits significantly stronger antitumor activity in a xenograft SCID mouse model and depletes B cells in cynomolgus monkeys more efficiently. Thus, ALT-803 can be modified as a functional scaffold for creating multispecific, targeted IL-15-based immunotherapeutic agents and may serve as a novel platform to improve the antitumor activity and clinical efficacy of therapeutic antibodies.


Assuntos
Imunidade Celular/efeitos dos fármacos , Interleucina-15/agonistas , Células Matadoras Naturais/imunologia , Linfoma de Células B/tratamento farmacológico , Proteínas , Proteínas Recombinantes de Fusão , Rituximab , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos SCID , Proteínas/química , Proteínas/genética , Proteínas/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Rituximab/química , Rituximab/genética , Rituximab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA