Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 48: 244-254, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29391264

RESUMO

Endosulfan was once the most commonly used pesticide in agriculture and horticulture. It is an environmentally persistent organochlorine compound with the potential to bioaccumulate as it progresses through the food chain. Its acute and chronic toxicity to mammals, including humans, is well known, but the molecular mechanisms of its toxicity are not fully understood. To gain insight to these mechanisms, we examined genome-wide gene expression changes of rat liver, heart, and kidney cells induced by endosulfan exposure. We found that among the cell types examined, kidney and liver cells were the most sensitive and most resilient, respectively, to endosulfan insult. We acquired RNA sequencing information from cells exposed to endosulfan to identify differentially expressed genes, which we further examined to determine the cellular pathways that were affected. In kidney cells, exposure to endosulfan was uniquely associated with altered expression levels of genes constituting the hypoxia-inducible factor-1 (HIF-1) signaling pathway. In heart and liver cells, exposure to endosulfan altered the expression levels of genes for many members of the extracellular matrix (ECM)-receptor interaction pathway. Because both HIF-1 signaling and ECM-receptor interaction pathways directly or indirectly control cell growth, differentiation, proliferation, and apoptosis, our findings suggest that dysregulation of these pathways is responsible for endosulfan-induced cell death.


Assuntos
Endossulfano/toxicidade , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Inseticidas/toxicidade , Rim/citologia , Rim/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Linhagem Celular , Matriz Extracelular/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Cultura Primária de Células , Ratos , Transdução de Sinais/efeitos dos fármacos
2.
Diabetes ; 66(5): 1172-1184, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28246292

RESUMO

Ten-week-old Zucker diabetic fatty (ZDF) rats at an early stage of diabetes embody metabolic characteristics of obese human patients with type 2 diabetes, such as severe insulin and glucose intolerance in muscle and the liver, excessive postprandial excursion of plasma glucose and insulin, and a loss of metabolic flexibility with decreased lipid oxidation. Metabolic flexibility and glucose flux were examined in ZDF rats during fasting and near-normal postprandial insulinemia and glycemia after correcting excessive postprandial hyperglycemia using treatment with a sodium-glucose cotransporter 2 inhibitor (SGLT2-I) for 7 days. Preprandial lipid oxidation was normalized, and with fasting, endogenous glucose production (EGP) increased by 30% and endogenous glucose disposal (E-Rd) decreased by 40%. During a postprandial hyperglycemic-hyperinsulinemic clamp after SGLT2-I treatment, E-Rd increased by normalizing glucose effectiveness to suppress EGP and stimulate hepatic glucose uptake; activation of glucokinase was restored and insulin action was improved, stimulating muscle glucose uptake in association with decreased intracellular triglyceride content. In conclusion, SGLT2-I treatment improves impaired glucose effectiveness in the liver and insulin sensitivity in muscle by eliminating glucotoxicity, which reinstates metabolic flexibility with restored preprandial lipid oxidation and postprandial glucose flux in ZDF rats.


Assuntos
Glicemia/efeitos dos fármacos , Canagliflozina/farmacologia , Intolerância à Glucose/metabolismo , Hiperglicemia/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Glicemia/metabolismo , Glucoquinase/efeitos dos fármacos , Glucoquinase/metabolismo , Glucose/metabolismo , Técnica Clamp de Glucose , Hipoglicemiantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Período Pós-Prandial/efeitos dos fármacos , Ratos , Ratos Zucker , Inibidores do Transportador 2 de Sódio-Glicose
3.
Am J Physiol Endocrinol Metab ; 308(3): E206-22, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25516552

RESUMO

To understand the underlying pathology of metabolic diseases, such as diabetes, an accurate determination of whole body glucose flux needs to be made by a method that maintains key physiological features. One such feature is a positive differential in insulin concentration between the portal venous and systemic arterial circulation (P/S-IG). P/S-IG during the determination of the relative contribution of liver and extra-liver tissues/organs to whole body glucose flux during an insulin clamp with either systemic (SID) or portal (PID) insulin delivery was examined with insulin infusion rates of 1, 2, and 5 mU·kg(-1)·min(-1) under either euglycemic or hyperglycemic conditions in 6-h-fasted conscious normal rats. A P/S-IG was initially determined with endogenous insulin secretion to exist with a value of 2.07. During an insulin clamp, while inhibiting endogenous insulin secretion by somatostatin, P/S-IG remained at 2.2 with PID, whereas, P/S-IG disappeared completely with SID, which exhibited higher arterial and lower portal insulin levels compared with PID. Consequently, glucose disappearance rates and muscle glycogen synthetic rates were higher, but suppression of endogenous glucose production and liver glycogen synthetic rates were lower with SID compared with PID. When the insulin clamp was performed with SID at 2 and 5 mU·kg(-1)·min(-1) without managing endogenous insulin secretion under euglycemic but not hyperglycemic conditions, endogenous insulin secretion was completely suppressed with SID, and the P/S-IG disappeared. Thus, compared with PID, an insulin clamp with SID underestimates the contribution of liver in response to insulin to whole body glucose flux.


Assuntos
Glicemia/metabolismo , Técnica Clamp de Glucose/métodos , Insulina/administração & dosagem , Administração Intravenosa , Animais , Cateterismo Periférico , Glucagon/metabolismo , Hiperglicemia/metabolismo , Insulina/sangue , Masculino , Veia Porta , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA