Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(8): e0160818, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518105

RESUMO

RATIONALE: Infants born to diabetic or obese mothers are at risk of respiratory distress and persistent pulmonary hypertension of the newborn (PPHN), conceivably through fuel-mediated pathogenic mechanisms. Prior research and preventative measures focus on controlling maternal hyperglycemia, but growing evidence suggests a role for additional circulating fuels including lipids. Little is known about the individual or additive effects of a maternal high-fat diet on fetal lung development. OBJECTIVE: The objective of this study was to determine the effects of a maternal high-fat diet, alone and alongside late-gestation diabetes, on lung alveologenesis and vasculogenesis, as well as to ascertain if consequences persist beyond the perinatal period. METHODS: A rat model was used to study lung development in offspring from control, diabetes-exposed, high-fat diet-exposed and combination-exposed pregnancies via morphometric, histologic (alveolarization and vasculogenesis) and physiologic (echocardiography, pulmonary function) analyses at birth and 3 weeks of age. Outcomes were interrogated for diet, diabetes and interaction effect using ANOVA with significance set at p≤0.05. Findings prompted additional mechanistic inquiry of key molecular pathways. RESULTS: Offspring exposed to maternal diabetes or high-fat diet, alone and in combination, had smaller lungs and larger hearts at birth. High-fat diet-exposed, but not diabetes-exposed offspring, had a higher perinatal death rate and echocardiographic evidence of PPHN at birth. Alveolar mean linear intercept, septal thickness, and airspace area (D2) were not significantly different between the groups; however, markers of lung maturity were. Both diabetes-exposed and diet-exposed offspring expressed more T1α protein, a marker of type I cells. Diet-exposed newborn pups expressed less surfactant protein B and had fewer pulmonary vessels enumerated. Mechanistic inquiry revealed alterations in AKT activation, higher endothelin-1 expression, and an impaired Txnip/VEGF pathway that are important for vessel growth and migration. After 3 weeks, mortality remained highest and static lung compliance and hysteresis were lowest in combination-exposed offspring. CONCLUSION: This study emphasizes the effects of a maternal high-fat diet, especially alongside late-gestation diabetes, on pulmonary vasculogenesis, demonstrates adverse consequences beyond the perinatal period and directs attention to mechanistic pathways of interest. Findings provide a foundation for additional investigation of preventative and therapeutic strategies aimed at decreasing pulmonary morbidity in at-risk infants.


Assuntos
Diabetes Gestacional , Dieta Hiperlipídica/efeitos adversos , Pulmão/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Hemodinâmica , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/mortalidade , Alvéolos Pulmonares/patologia , Artéria Pulmonar/patologia , Veias Pulmonares/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA