Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(33): 11410-11417, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32527724

RESUMO

The health of a cell depends on accurate translation and proper protein folding, whereas misfolding can lead to aggregation and disease. The first opportunity for a protein to fold occurs during translation, when the ribosome and surrounding environment can affect the nascent chain energy landscape. However, quantifying these environmental effects is challenging because ribosomal proteins and rRNA preclude most spectroscopic measurements of protein energetics. Here, we have applied two gel-based approaches, pulse proteolysis and force-profile analysis, to probe the folding and unfolding pathways of RNase H (RNH) nascent chains stalled on the prokaryotic ribosome in vitro We found that ribosome-stalled RNH has an increased unfolding rate compared with free RNH. Because protein stability is related to the ratio of the unfolding and folding rates, this increase completely accounts for the observed change in protein stability and indicates that the folding rate is unchanged. Using arrest peptide-based force-profile analysis, we assayed the force generated during the folding of RNH on the ribosome. Surprisingly, we found that population of the RNH folding intermediate is required to generate sufficient force to release a stall induced by the SecM stalling sequence and that readthrough of SecM directly correlates with the stability of the RNH folding intermediate. Together, these results imply that the folding pathway of RNH is unchanged on the ribosome. Furthermore, our findings indicate that the ribosome promotes RNH unfolding while the nascent chain is proximal to the ribosome, which may limit the deleterious effects of RNH misfolding and assist in folding fidelity.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Dobramento de Proteína , Ribonuclease H/química , Estabilidade Enzimática , Escherichia coli/enzimologia , Desdobramento de Proteína , Proteólise , Ribossomos/química
2.
J Biol Chem ; 292(38): 15636-15648, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28754692

RESUMO

Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational phenotypes of interest.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas/química , Alcinos/química , Azidas/química , Catálise , Cobre/química , Reação de Cicloadição , Dobramento de Proteína
3.
Proc Natl Acad Sci U S A ; 113(47): 13402-13407, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821780

RESUMO

Accurate protein folding is essential for proper cellular and organismal function. In the cell, protein folding is carefully regulated; changes in folding homeostasis (proteostasis) can disrupt many cellular processes and have been implicated in various neurodegenerative diseases and other pathologies. For many proteins, the initial folding process begins during translation while the protein is still tethered to the ribosome; however, most biophysical studies of a protein's energy landscape are carried out in isolation under idealized, dilute conditions and may not accurately report on the energy landscape in vivo. Thus, the energy landscape of ribosome nascent chains and the effect of the tethered ribosome on nascent chain folding remain unclear. Here we have developed a general assay for quantitatively measuring the folding stability of ribosome nascent chains, and find that the ribosome exerts a destabilizing effect on the polypeptide chain. This destabilization decreases as a function of the distance away from the peptidyl transferase center. Thus, the ribosome may add an additional layer of robustness to the protein-folding process by avoiding the formation of stable partially folded states before the protein has completely emerged from the ribosome.


Assuntos
Ribossomos/metabolismo , Escherichia coli/metabolismo , Metotrexato/farmacologia , Peptídeo Hidrolases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Ribossomos/efeitos dos fármacos , Espectrometria de Fluorescência , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA