Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biol Chem ; 293(34): 13297-13309, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29925592

RESUMO

Microtubule-associated protein 2c (MAP2c) is a 49-kDa intrinsically disordered protein regulating the dynamics of microtubules in developing neurons. MAP2c differs from its sequence homologue Tau in the pattern and kinetics of phosphorylation by cAMP-dependent protein kinase (PKA). Moreover, the mechanisms through which MAP2c interacts with its binding partners and the conformational changes and dynamics associated with these interactions remain unclear. Here, we used NMR relaxation and paramagnetic relaxation enhancement techniques to determine the dynamics and long-range interactions within MAP2c. The relaxation rates revealed large differences in flexibility of individual regions of MAP2c, with the lowest flexibility observed in the known and proposed binding sites. Quantitative conformational analyses of chemical shifts, small-angle X-ray scattering (SAXS), and paramagnetic relaxation enhancement measurements disclosed that MAP2c regions interacting with important protein partners, including Fyn tyrosine kinase, plectin, and PKA, adopt specific conformations. High populations of polyproline II and α-helices were found in Fyn- and plectin-binding sites of MAP2c, respectively. The region binding the regulatory subunit of PKA consists of two helical motifs bridged by a more extended conformation. Of note, although MAP2c and Tau did not differ substantially in their conformations in regions of high sequence identity, we found that they differ significantly in long-range interactions, dynamics, and local conformation motifs in their N-terminal domains. These results highlight that the N-terminal regions of MAP2c provide important specificity to its regulatory roles and indicate a close relationship between MAP2c's biological functions and conformational behavior.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Plectina/metabolismo , Conformação Proteica , Sítios de Ligação , Humanos , Fosforilação , Plectina/química , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X , Domínios de Homologia de src
2.
Biochemistry ; 52(50): 9068-79, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24251416

RESUMO

Tau protein plays an important role in neuronal physiology and Alzheimer's neurodegeneration. Its abilities to aggregate abnormally, to bind to microtubules (MTs), and to promote MT assembly are all influenced by phosphorylation. Phosphorylation of serine residues in the KXGS motifs of Tau's repeat domain, crucial for MT interactions and aggregation, is facilitated most efficiently by microtubule-associated protein/microtubule affinity-regulating kinases (MARKs). Here we applied high-resolution nuclear magnetic resonance analysis to study the kinetics of phosphorylation of Tau by MARK2 and its impact on the structure and microtubule binding of Tau. We demonstrate that MARK2 binds to the N-terminal tail of Tau and selectively phosphorylates three major and five minor serine residues in the repeat domain and C-terminal tail. Structural changes induced by phosphorylation of Tau by MARK2 are highly localized in the proximity of the phosphorylation site and do not affect the global conformation, in contrast to phosphorylation in the proline-rich region. Furthermore, single-residue analysis of binding of Tau to MTs provides support for a model in which Tau's hot spots of MT interaction bind independently of each other and are differentially affected by phosphorylation.


Assuntos
Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas tau/metabolismo , Humanos , Microtúbulos/química , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas tau/química
3.
J Mol Recognit ; 23(5): 435-47, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20058326

RESUMO

In this report, the solution structure of the nucleocapsid-binding domain of the measles virus phosphoprotein (XD, aa 459-507) is described. A dynamic description of the interaction between XD and the disordered C-terminal domain of the nucleocapsid protein, (N(TAIL), aa 401-525), is also presented. XD is an all alpha protein consisting of a three-helix bundle with an up-down-up arrangement of the helices. The solution structure of XD is very similar to the crystal structures of both the free and bound form of XD. One exception is the presence of a highly dynamic loop encompassing XD residues 489-491, which is involved in the embedding of the alpha-helical XD-binding region of N(TAIL). Secondary chemical shift values for full-length N(TAIL) were used to define the precise boundaries of a transient helical segment that coincides with the XD-binding domain, thus shedding light on the pre-recognition state of N(TAIL). Titration experiments with unlabeled XD showed that the transient alpha-helical conformation of N(TAIL) is stabilized upon binding. Lineshape analysis of NMR resonances revealed that residues 483-506 of N(TAIL) are in intermediate exchange with XD, while the 475-482 and 507-525 regions are in fast exchange. The N(TAIL) resonance behavior in the titration experiments is consistent with a complex binding model with more than two states.


Assuntos
Vírus do Sarampo/química , Nucleoproteínas/química , Fosfoproteínas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Soluções
4.
Protein Sci ; 18(9): 1840-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19554627

RESUMO

The relation of alpha-synuclein (alphaS) aggregation to Parkinson's disease has long been recognized, but the pathogenic species and its molecular properties have yet to be identified. To obtain insight into the properties of alphaS in an aggregation-prone state, we studied the structural properties of alphaS at acidic pH using NMR spectroscopy and computation. NMR demonstrated that alphaS remains natively unfolded at lower pH, but secondary structure propensities were changed in proximity to acidic residues. The ensemble of conformations of alphaS at acidic pH is characterized by a rigidification and compaction of the Asp and Glu-rich C-terminal region, an increased probability for proximity between the NAC-region and the C-terminal region and a lower probability for interactions between the N- and C-terminal regions.


Assuntos
alfa-Sinucleína/química , Sequência de Aminoácidos , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Doença de Parkinson/metabolismo , Conformação Proteica , Dobramento de Proteína
5.
Biochemistry ; 47(50): 13308-17, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19086273

RESUMO

Analogous to insulin, the relaxin-like factor (RLF) must undergo a structural transition to the active form prior to receptor binding. Thus, the C-terminus of the B chain of RLF folds toward the surface of the central B chain helix, causing partial obliteration of the two essential RLF receptor-binding site residues, valine B19 and tryptophan B27. Via comparison of the solution structure of a fully active C-terminally cross-linked RLF analogue with the native synthetic human RLF (hRLF), it became clear that the cross-linked analogue largely retains the essential folding of the native protein. Both proteins exist in a major and minor conformation, as revealed by multiple resonances from tryptophan B27 and adjacent residues on the B chain helix. Notably, the minor conformation is significantly more highly populated in the chemically cross-linked RLF than it is in the hRLF. In addition, compared to the unmodified molecule, subtle differences are observed within the B chain helix whereby the cross-linked derivative shows a reduced level of hydrogen bonding and significant peak broadening at the binding site residue ValB19. On the basis of these observations, we suggest that the solution structure of the native hormone represents an inactive conformer and that a dynamic equilibrium exists between the C-terminally unfolded binding conformation and the inactive conformation of the RLF.


Assuntos
Insulina/química , Proteínas/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Insulina/síntese química , Insulina/metabolismo , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/síntese química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas/síntese química , Proteínas/metabolismo , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA