Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 18(14): 1078-83, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18639458

RESUMO

Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses [1], [2] and [3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear [4], [5], [6] and [7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature [4] and consequent ability to chelate divalent calcium ions [8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply [4], [5] and [9]) is a prerequisite for activation of myriad defenses by MAMPs [10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.


Assuntos
Plantas/imunologia , Plantas/microbiologia , Polissacarídeos Bacterianos/toxicidade , Arabidopsis/imunologia , Arabidopsis/microbiologia , Bactérias/patogenicidade , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/imunologia , Imunidade Inata/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/efeitos dos fármacos , Virulência/imunologia , Xanthomonas campestris/patogenicidade
2.
Microbes Infect ; 10(5): 571-4, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18403233

RESUMO

Lipopolysaccharides, the ubiquitous part of the outer membrane of Gram-negative bacteria, and their derivatives are recognised by plants to trigger or potentiate particular defence responses such as induction of genes encoding pathogenesis-related proteins. The molecular mechanisms of LPS perception that underpin these effects in plants are, however, unknown. Here, lipid A from Halomonas magadiensis, which is an antagonist of lipid A action in human cells, was used to investigate lipid A action in plants. Our findings offer an insight into the different structural requirements for direct induction and potentiation of plant defences by lipid A.


Assuntos
Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Halomonas/química , Lipídeo A/antagonistas & inibidores , Escherichia coli/química , Infecções por Escherichia coli/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , RNA de Plantas/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Chembiochem ; 9(6): 896-904, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18350528

RESUMO

Lipopolysaccharides (LPSs) are major components of the cell surface of Gram-negative bacteria. LPSs comprise a hydrophilic heteropolysaccharide (formed by the core oligosaccharide and the O-specific polysaccharide) that is covalently linked to the glycolipid moiety lipid A, which anchors these macromolecules to the external membrane. LPSs are one of a group of molecules called pathogen-associated molecular patterns (PAMPs) that are indispensable for bacterial growth and viability, and act to trigger innate defense responses in eukaryotes. We have previously shown that LPS from the plant pathogen Xanthomonas campestris pv. campestris (Xcc) can elicit defense responses in the model plant Arabidopsis thaliana. Here we have extended these studies by analysis of the structure and biological activity of LPS from a nonpathogenic Xcc mutant, strain 8530. We show that this Xcc strain is defective in core completion and introduces significant modification in the lipid A region, which involves the degree of acylation and nonstoichiometric substitution of the phosphate groups with phosphoethanolamine. Lipid A that was isolated from Xcc strain 8530 did not have the ability to induce the defense-related gene PR1 in Arabidopsis, or to prevent the hypersensitive response (HR) that is caused by avirulent bacteria as the lipid A from the wild-type could. This suggests that Xcc has the capacity to modify the structure of the lipid A to reduce its activity as a PAMP. We speculate that such effects might occur in wild-type bacteria that are exposed to stresses such as those that might be encountered during plant colonization and disease.


Assuntos
Arabidopsis/imunologia , Imunidade Inata , Lipídeo A/química , Lipídeo A/imunologia , Xanthomonas campestris , Acilação , Regulação da Expressão Gênica de Plantas , Lipídeo A/metabolismo , Espectroscopia de Ressonância Magnética , Mutação , Oligossacarídeos/análise , Oligossacarídeos/química , Fosforilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA