Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14113, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982111

RESUMO

Pancreatic ß-cells have an extraordinary ability to adapt to acute fluctuations in glucose levels by rapid changing insulin production to meet metabolic needs. Although acute changes have been characterised, effects of prolonged metabolic stress on ß-cell dynamics are still unclear. Here, the aim was to investigate pancreatic ß-cell dynamics and function during and after prolonged hypoglycaemia. Hypoglycaemia was induced in male and female rats by infusion of human insulin for 8 weeks, followed by a 4-week infusion-free recovery period. Animals were euthanized after 4 or 8 weeks of infusion, and either 2 days and 4 weeks after infusion-stop. Total volumes of pancreatic islets and ß-cell nuclei, islet insulin and glucagon content, and plasma c-peptide levels were quantified. Prolonged hypoglycaemia reduced c-peptide levels, islet volume and almost depleted islet insulin. Relative ß-cell nuclei: total pancreas volume decreased, while being unchanged relative to islet volume. Glucagon: total pancreas volume decreased during hypoglycaemia, whereas glucagon: islet volume increased. Within two days after infusion-stop, plasma glucose and c-peptide levels normalised and all remaining parameters were fully reversed after 4 weeks. In conclusion, our findings indicate that prolonged hypoglycaemia inactivates ß-cells, which can rapidly be reactivated when needed, demonstrating the high plasticity of ß-cells even following prolonged suppression.


Assuntos
Hipoglicemia , Ilhotas Pancreáticas , Animais , Glicemia/metabolismo , Peptídeo C/metabolismo , Feminino , Glucagon/metabolismo , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos
2.
Int J Toxicol ; 41(6): 455-475, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36036386

RESUMO

N9-GP/Rebinyn®/Refixia® is an approved PEGylated (polyethylene glycol-conjugated) recombinant human factor IX intended for prophylactic and/or on-demand treatment in adults and children with haemophilia B. A juvenile neurotoxicity study was conducted in male rats to evaluate effects on neurodevelopment, sexual maturation, and fertility following repeat-dosing of N9-GP. Male rats were dosed twice weekly from Day 21 of age with N9-GP or vehicle for 10 weeks, followed by a dosing-free recovery period for 13 weeks and terminated throughout the dosing and recovery periods. Overall, dosing N9-GP to juvenile rats did not result in any functional or pathological effects, as measured by neurobehavioural/neurocognitive tests, including motor activity, sensory function, learning and memory as well as growth, sexual maturation, and fertility. This was further supported by the extensive histopathologic evaluation of brain tissue. Exposure and distribution of polyethylene glycol was investigated in plasma, choroid plexus, cerebrospinal fluid, and brain sections. PEG did not cross the blood brain barrier and PEG exposure did not result in any effects on neurodevelopment. In conclusion, dosing of N9-GP to juvenile rats did not identify any effects on growth, sexual maturation and fertility, clinical and histological pathology, or neurodevelopment related to PEG exposure and supports the prophylactic use of N9-GP in children.


Assuntos
Fator IX , Hemofilia B , Adulto , Animais , Criança , Fator IX/uso terapêutico , Fertilidade , Hemofilia B/tratamento farmacológico , Humanos , Lactente , Masculino , Polietilenoglicóis/toxicidade , Ratos , Proteínas Recombinantes
3.
PLoS One ; 17(3): e0265988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35344549

RESUMO

Maternal malnutrition is associated with decreased nutrient transfer to the foetus, which may lead to foetal growth restriction, predisposing children to a variety of diseases. However, regulation of placental nutrient transfer during decreased nutrient availability is not fully understood. In the present study, the aim was to investigate changes in levels of placental nutrient transporters accompanying maternal hypoglycaemia following different durations and stages of gestation in rats. Maternal hypoglycaemia was induced by insulin-infusion throughout gestation until gestation day (GD)20 or until end of organogenesis (GD17), with sacrifice on GD17 or GD20. Protein levels of placental glucose transporters GLUT1 (45/55 kDa isotypes) and GLUT3, amino acid transporters SNAT1 and SNAT2, and insulin receptor (InsR) were assessed. On GD17, GLUT1-45, GLUT3, and SNAT1 levels were increased and InsR levels decreased versus controls. On GD20, following hypoglycaemia throughout gestation, GLUT3 levels were increased, GLUT1-55 showed the same trend. After cessation of hypoglycaemia at end of organogenesis, GLUT1-55, GLUT3, and InsR levels were increased versus controls, whereas SNAT1 levels were decreased. The increases in levels of placental nutrient transporters seen during maternal hypoglycaemia and hyperinsulinemia likely reflect an adaptive response to optimise foetal nutrient supply and development during limited availability of glucose.


Assuntos
Hipoglicemia , Placenta , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Hipoglicemia/metabolismo , Troca Materno-Fetal , Nutrientes , Placenta/metabolismo , Gravidez , Ratos
4.
Bone ; 145: 115781, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285255

RESUMO

The implications of obesity and weight loss for human bone health are not well understood. Although the bone changes associated with weight loss are similar in humans and rodents, that is not the case for obesity. In humans, obesity is generally associated with increased bone mass, an outcome which is exacerbated by advanced age and menopause. In rodents, by contrast, bone mass decreases in proportion to severity and duration of obesity, and is influenced by sex, age and mechanical load. Despite these discrepancies, rodents are frequently used to model the situation in humans. In this review, we summarise the existing knowledge of the effects of obesity and weight loss on bone mass in humans and rodents, focusing on the translatability of findings from animal models. We then describe how animal models should be used to broaden the understanding of the relationship between obesity, weight loss, and skeletal health in humans. Specifically, we highlight the aspects of study design that should be considered to optimise translatability of the rodent models of obesity and weight loss. Notably, the sex, age, and nutritional status of the animals should ideally match those of interest in humans. With these caveats in mind, and depending on the research question asked, our review underscores that animal models can provide valuable information for obesity and weight-management research.


Assuntos
Densidade Óssea , Redução de Peso , Animais , Osso e Ossos , Humanos , Modelos Animais , Obesidade
5.
Sci Rep ; 10(1): 5609, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221393

RESUMO

Maternal hypoglycaemia throughout gestation until gestation day (GD)20 delays foetal growth and skeletal development. While partially prevented by return to normoglycaemia after completed organogenesis (GD17), underlying mechanisms are not fully understood. Here, we investigated the pathogenesis of these changes and significance of maternal hypoglycaemia extending beyond organogenesis in non-diabetic rats. Pregnant rats received insulin-infusion until GD20 or GD17, with sacrifice on GD20. Hypoglycaemia throughout gestation increased maternal corticosterone levels, which correlated with foetal levels. Growth plates displayed central histopathologic changes comprising disrupted cellular organisation, hypertrophic chondrocytes, and decreased cellular density; expression of pro-angiogenic factors, HIF-1α and VEGF-A increased in surrounding areas. Disproportionately decreased growth plate zone volumes and lower expression of the structural protein MATN-3 were seen, while bone ossification parameters were normal. Ending maternal/foetal hypoglycaemia on GD17 reduced incidence and severity of histopathologic changes and with normal growth plate volume. Compromised foetal skeletal development following maternal hypoglycaemia throughout gestation is hypothesised to result from corticosterone-induced hypoxia in growth plates, where hypoxia disrupts chondrocyte maturation and growth plate structure and volume, decreasing long bone growth. Maternal/foetal hypoglycaemia lasting only until GD17 attenuated these changes, suggesting a pivotal role of glucose in growth plate development.


Assuntos
Desenvolvimento Fetal/fisiologia , Feto/patologia , Lâmina de Crescimento/patologia , Hipoglicemia/patologia , Animais , Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Condrócitos/patologia , Corticosterona/metabolismo , Feminino , Feto/metabolismo , Lâmina de Crescimento/metabolismo , Hipoglicemia/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Gravidez , Cuidado Pré-Natal/métodos , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Reprod Toxicol ; 77: 1-24, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29408374

RESUMO

Glucose is the major energy substrate during embryogenesis and the embryo is dependent on glucose from the maternal circulation to ensure normal metabolism and growth. The placenta plays a key role in this nutrient transfer in mammals, both during embryogenesis and after the development of the chorio-allantoic placental circulation. Maternal hypoglycaemia is accompanied by foetal hypoglycaemia and maternal counter-regulatory measures including a priority to keep nutrients in the maternal circulation by restricting their transfer to the foetus. Concomitantly, the foetus initiates its own counter-regulatory attempt to secure nutrients for its development and survival. Despite these measures, there is a general decrease in nutrient transfer to the foetus, which may have severe consequences for foetal development such as malformations and delayed skeletal development.


Assuntos
Desenvolvimento Embrionário , Desenvolvimento Fetal , Hipoglicemia/metabolismo , Placenta/metabolismo , Gravidez/metabolismo , Animais , Feminino , Glucose/metabolismo , Humanos , Troca Materno-Fetal , Ratos
7.
Basic Clin Pharmacol Toxicol ; 122(1): 165-175, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28815909

RESUMO

Peripheral neuropathy is one of the most common complications of diabetic hyperglycaemia. Insulin-induced hypoglycaemia (IIH) might potentially exacerbate or contribute to neuropathy as hypoglycaemia also causes peripheral neuropathy. In rats, IIH induces neuropathy associated with skeletal muscle changes. Aims of this study were to investigate the progression and sequence of histopathologic changes caused by chronic IIH in rat peripheral nerves and skeletal muscle, and whether such changes were reversible. Chronic IIH was induced by infusion of human insulin, followed by an infusion-free recovery period in some of the animals. Sciatic, plantar nerves and thigh muscle were examined histopathologically after four or eight weeks of infusion and after the recovery period. IIH resulted in high incidence of axonal degeneration in sciatic nerves and low incidence in plantar nerves indicating proximo-distal progression of the neuropathy. The neuropathy progressed in severity (sciatic nerve) and incidence (sciatic and plantar nerve) with the duration of IIH. The myopathy consisted of groups of angular atrophic myofibres which resembled histopathologic changes classically seen after denervation of skeletal muscle, and severity of the myofibre atrophy correlated with severity of axonal degeneration in sciatic nerve. Both neuropathy and myopathy were still present after four weeks of recovery, although the neuropathy was less severe. In conclusion, the results suggest that peripheral neuropathy induced by IIH progresses proximo-distally, that severity and incidence increase with duration of the hypoglycaemia and that these changes are partially reversible within four weeks. Furthermore, IIH-induced myopathy is most likely secondary to the neuropathy.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemia/fisiopatologia , Hipoglicemiantes/efeitos adversos , Músculo Esquelético/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Animais , Atrofia/etiologia , Doença Crônica , Diabetes Mellitus/sangue , Modelos Animais de Doenças , Progressão da Doença , Feminino , Membro Posterior/inervação , Membro Posterior/patologia , Membro Posterior/fisiopatologia , Humanos , Hipoglicemia/sangue , Hipoglicemia/induzido quimicamente , Insulina/efeitos adversos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Doenças do Sistema Nervoso Periférico/sangue , Doenças do Sistema Nervoso Periférico/etiologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Nervo Tibial/fisiopatologia
8.
Int J Endocrinol ; 2017: 7861236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421113

RESUMO

The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30-50% (4-6 mM versus 7-9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced.

9.
Basic Clin Pharmacol Toxicol ; 121(1): 53-66, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28218988

RESUMO

New insulin analogues with a longer duration of action and a 'peakless' pharmacokinetic profile have been developed to improve efficacy, safety and convenience for patients with diabetes. During non-clinical development, according to regulatory guidelines, these analogues are tested in healthy euglycaemic rats rendering them persistently hypoglycaemic. Little is known about the effect of persistent (24 hr/day) insulin-induced hypoglycaemia (IIH) in rats, complicating interpretation of results in pre-clinical studies with new longer-acting insulin analogues. In this study, we investigated the effects of persistent IIH and their reversibility in euglycaemic rats. Histopathological changes in insulin-infused animals included partly reversible axonal and reversible myofibre degeneration in peripheral nerve and skeletal muscle tissue, respectively, as well as reversible pancreatic islet atrophy and partly reversible increase in unilocular adipocytes in brown adipose tissue. Additionally, results suggested increased gluconeogenesis. The observed hyperphagia, the pancreatic, peripheral nerve and skeletal muscle changes were considered related to the hypoglycaemia. Cessation of insulin infusion resulted in transient hyperglycaemia, decreased food consumption and body-weight loss before returning to control levels. The implications for the interpretation of non-clinical studies with long-acting insulin analogues are discussed.


Assuntos
Glicemia/efeitos dos fármacos , Hiperglicemia/etiologia , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/toxicidade , Insulina de Ação Prolongada/toxicidade , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Glicemia/análise , Modelos Animais de Doenças , Feminino , Gluconeogênese/efeitos dos fármacos , Hiperglicemia/sangue , Hiperfagia/etiologia , Hipoglicemia/sangue , Hipoglicemia/complicações , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA