Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 59(4): 569-576, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846910

RESUMO

Exposure of a dam to pathogens may potentially affect her fawns positively or negatively. Mammalian females transfer immunologic protection to their offspring via colostrum obtained while nursing. Conversely, chronic diseases in dams may potentially result in small and weak neonates, reduced milk production or quality, or infection. Little is known about how pathogen exposure in adult female white-tailed deer (Odocoileus virginianus) affects offspring survival. Our objective was to assess pathogen exposure for female white-tailed deer and subsequent survival rates of fawns in Dunn and Grant counties, North Dakota, and Perkins County, South Dakota, USA. We collected blood serum from 150 adult female deer during 2014. We compared survival of 49 fawns to maternal exposure to 10 pathogens from 37 of 150 adult females. There was no difference in fawn mass between dams based on antibody status and no difference in fawn survival for nine pathogens. The 12-wk survival for fawns born to mothers with antibodies against bovine herpesvirus 1 (BoHV-1, causing infectious bovine rhinotracheitis) was lower than for fawns born from mothers without antibodies against BoHV-1; however, the indirect or direct impacts of BoHV-1 exposure in mothers on fawn survival are unclear. Although our findings suggest that the cost of exposure to previous diseases may have minimal impact on short-term fawn survival for most pathogens, additional research with increased sample sizes is needed to confirm our findings.


Assuntos
Cervos , Bovinos , Animais , Feminino , Espectroscopia de Ressonância de Spin Eletrônica/veterinária , Anticorpos , Washington
2.
Ecol Evol ; 13(4): e9976, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091564

RESUMO

Wildlife population dynamics are modulated by abiotic and biotic factors, typically climate, resource availability, density-dependent effects, and predator-prey interactions. Understanding whether and how human-caused disturbances shape these ecological processes is helpful for the conservation and management of wildlife and their habitats within increasingly human-dominated landscapes. However, many jurisdictions lack either long-term longitudinal data on wildlife populations or measures of the interplay between human-mediated disturbance, climate, and predator density. Here, we use a 50-year time series (1962-2012) on mule deer (Odocoileus hemionus) demographics, seasonal weather, predator density, and oil and gas development patterns from the North Dakota Badlands, USA, to investigate long-term effects of landscape-level disturbance on mule deer fawn fall recruitment, which has declined precipitously over the last number of decades. Mule deer fawn fall recruitment in this study represents the number of fawns per female (fawn:female ratio) that survive through the summer to October. We used this fawn recruitment index to evaluate the composite effects of interannual extreme weather conditions, energy development, and predator density. We found that density-dependent effects and harsh seasonal weather were the main drivers of fawn fall recruitment in the North Dakota Badlands. These effects were further shaped by the interaction between harsh seasonal weather and predator density (i.e., lower fawn fall recruitment when harsh weather was combined with higher predator density). Additionally, we found that fawn fall recruitment was modulated by interactions between seasonal weather and energy development (i.e., lower fawn fall recruitment when harsh weather was combined with higher density of active oil and gas wells). Interestingly, we found that the combined effect of predator density and energy development was not interactive but rather additive. Our analysis demonstrates how energy development may modulate fluctuations in mule deer fawn fall recruitment concurrent with biotic (density-dependency, habitat, predation, woody vegetation encroachment) and abiotic (harsh seasonal weather) drivers. Density-dependent patterns emerge, presumably due to limited quality habitat, being the primary factor influencing fall fawn recruitment in mule deer. Secondarily, stochastic weather events periodically cause dramatic declines in recruitment. And finally, the additive effects of human disturbance and predation can induce fluctuations in fawn fall recruitment. Here we make the case for using long-term datasets for setting long-term wildlife management goals that decision makers and the public can understand and support.

3.
Ecol Evol ; 11(11): 6444-6455, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141230

RESUMO

Understanding what variables affect ungulate neonate survival is imperative to successful conservation and management of the species. Predation is commonly cited as a cause-specific source of mortality, and ecological covariates often influence neonate survival. However, variation in survival estimates related to capture methodology has been documented with opportunistically captured neonates generally displaying greater survival than those captured via aid of vaginal implant transmitters (VITs), likely because of increased left truncation observed in the opportunistically captured datasets. Our goal was to assess whether 3- and 6-month survival estimates varied by capture method while simultaneously assessing whether capture method affected model selection and interpretation of ecological covariates for white-tailed deer neonates captured from three study sites from 2014 to 2015 in North Dakota and South Dakota, USA. We found survival varied by capture method for 3-month neonate survival with opportunistically captured neonates displaying up to 26% greater survival than their counterparts captured via VITs; however, this relationship was not present for 6-month survival. We also found model selection and subsequent interpretation of ecological covariates varied when analyzing datasets comprised of neonates captured via VITs, neonates captured opportunistically, and all neonates combined regardless of capture method. When interpreting results from our VIT-only analysis for 3-month survival, we found survival varied by three time intervals and was lowest in the first two weeks of life. Capture method did not affect 6-month survival, which was most influenced by total precipitation occurring during 3 - 8 weeks of a neonate's life and percent canopy cover found at a neonate's capture site. Our results support previous research that capture method must be accounted for when deriving survival estimates for ungulate neonates as it can impact derived estimates and subsequent interpretation of results.

4.
J Environ Manage ; 248: 109299, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376608

RESUMO

Understanding the underlying mechanisms driving population demographics such as species-habitat relationships and the spatial scale in which these relationships occur is essential for developing optimal management strategies. Here we evaluated how landscape characteristics and winter severity measured at three spatial scales (1 km2, 9 km2, and hunting unit) influenced white-tailed deer occurrence and abundance across North Dakota by using 10 years of winter aerial survey data and generalized linear mixed effects models. In general, forest, wetland, and Conservation Reserve Program (CRP) lands were the main drivers of deer occurrence and abundance in most of the spatial scales analyzed. However, the effects of habitat features vary between the home-range scale (9 km2) and the finer spatial scale (1 km2; i.e., within home ranges). While escape cover was the main factor driving white-tailed deer occurrence and abundance at broad spatial scales, at a fine spatial scale deer also selected for food (mainly residual winter cropland). With CRP appearing in nearly all top models, here we had strong evidence that this type of program will be fundamental to sustaining populations of white-tailed deer that can meet recreational demands. In addition, land managers should focus on ways to protect other escape covers (e.g., forest and wetland) on a broad spatial scale while encouraging landowners to supply winter resources at finer spatial scales. We therefore suggest a spatial multi-scale approach that involves partnerships among landowners and government agencies for effectively managing white-tailed deer.


Assuntos
Cervos , Animais , Demografia , Ecossistema , North Dakota , Estações do Ano
5.
Sci Rep ; 9(1): 4534, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872713

RESUMO

Over the past decade, abnormalities have been documented in white-tailed deer (Odocoileus virginianus) in west-central Montana. Hypotheses proposed to explain these anomalies included contact with endocrine disrupting pesticides, such as imidacloprid. We evaluated the effects of imidacloprid experimentally at the South Dakota State University Wildlife and Fisheries Captive Facility where adult white-tailed deer females and their fawns were administered aqueous imidacloprid (an untreated control, 1,500 ng/L, 3,000 ng/L, and 15,000 ng/L). Water consumption, thyroid hormone function, behavioral responses, and skull and jawbone measurements were compared among treatments. Additionally, liver, spleen, genital, and brain imidacloprid concentrations were determined by an enzyme-linked immunosorbent assay (ELISA). Results indicated that 1) control deer consumed more water than treatment groups, 2) imidacloprid was present in the organs of our control group, indicating environmental contamination, 3) as imidacloprid increased in the spleen, fawn survival, thyroxine levels, jawbone lengths, body weight, and organ weights decreased, 4) adult female imidacloprid levels in the genitals were negatively correlated with genital organ weight and, 5) behavioral observations indicated that imidacloprid levels in spleens were negatively correlated with activity levels in adult females and fawns. Results demonstrate that imidacloprid has direct effects on white-tailed deer when administered at field-relevant doses.


Assuntos
Inseticidas/toxicidade , Neonicotinoides/toxicidade , Reprodução/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Cervos , Feminino , Arcada Osseodentária/efeitos dos fármacos , Arcada Osseodentária/fisiologia , Masculino , Reprodução/fisiologia , Crânio/efeitos dos fármacos , Crânio/fisiologia , Tiroxina/sangue , Tri-Iodotironina/sangue
6.
PLoS One ; 14(2): e0211650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716128

RESUMO

Changes in land use have resulted in range shifts of many wildlife species, including those entering novel environments, resulting in the critical need to understand their spatial ecology to inform ecosystem effects and management decisions. Dispersing elk (Cervus elaphus) were colonizing areas of suitable habitat in the Northern Great Plains, USA, resulting in crop depredation complaints in these areas. Although state resource managers had little information on these elk herds, limited evidence suggested temporal movements into Canada. We collected and analyzed essential information on home range and habitat selection for 3 elk herds residing in North Dakota. We captured 5 adult female elk in each study area, affixed global positioning system collars, and monitored them for 1 year (2016-2017). We estimated diel period, seasonal, and hunting season home ranges using Brownian Bridge Movement Models for each individual. We analyzed habitat selection using multinomial logit models to test for differences in use of land classes, and for departures from proportionate use based on random sampling; our predictor variables included individual elk, diel period, and season. Home ranges differed between the 3 herds, seasons, and diel period; gun and winter season home ranges were both larger than in summer, as was night when compared with day. Female elk generally restricted themselves to cover during the day and entered open areas at night and during winter months. Our results also suggest that elk in our study areas tended to seek more cover, and in the case of our Turtle Mountain study area, some cross into Canada during gun season. Our study provides a better understanding of the spatial ecology of elk in the Northern Great Plains while highlighting the need for enhanced international cooperative management efforts.


Assuntos
Cervos/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Animais , Animais Selvagens/fisiologia , Canadá , Ecossistema , Comportamento Alimentar/fisiologia , Feminino , Sistemas de Informação Geográfica , Modelos Biológicos , North Dakota , Estações do Ano
7.
PLoS One ; 13(4): e0195247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621287

RESUMO

Offspring survival is generally more variable than adult survival and may limit population growth. Although white-tailed deer neonate survival has been intensively investigated, recent work has emphasized how specific cover types influence neonate survival at local scales (single study area). These localized investigations have often led to inconsistences within the literature. Developing specific hypotheses describing the relationships among environmental, habitat, and landscape factors influencing white-tailed deer neonate survival at regional scales may allow for detection of generalized patterns. Therefore, we developed 11 hypotheses representing the various effects of environmental (e.g., winter and spring weather), habitat (e.g., hiding and escape cover types), and landscape factors (e.g., landscape configuration regardless of specific cover type available) on white-tailed deer neonate survival up to one-month and from one- to three-months of age. At one-month, surviving fawns experienced a warmer lowest recorded June temperature and more June precipitation than those that perished. At three-months, patch connectance (percent of patches of the corresponding patch type that are connected within a predefined distance) positively influenced survival. Our results are consistent with white-tailed deer neonate ecology: increased spring temperature and precipitation are likely associated with a flush of nutritional resources available to the mother, promoting increased lactation efficiency and neonate growth early in life. In contrast, reduced spring temperature with increased precipitation place neonates at risk to hypothermia. Increased patch connectance likely reflects increased escape cover available within a neonate's home range after they are able to flee from predators. If suitable escape cover is available on the landscape, then managers could focus efforts towards manipulating landscape configuration (patch connectance) to promote increased neonate survival while monitoring spring weather to assess potential influences on current year survival.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Cervos/crescimento & desenvolvimento , Sobrevida/fisiologia , Animais , Cervos/fisiologia , Ecologia , Ecossistema , Geografia , Estações do Ano , Estados Unidos , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA