Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17809, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497322

RESUMO

The phase noise of microwaves extracted from optical frequency combs is fundamentally limited by thermal and shot noise, which is inherent in photodetection. Saturation of a photodiode due to the high peak power of ultrashort optical pulses, however, prohibits further scaling of white phase noise by increasing incident optical power. Here we demonstrate that the photocurrent pulse shaping via balanced photodetection, which is accomplished by replacing a single photodiode with a balanced photodetector (BPD) and delaying one of the optical pulses, provides a simple and efficient optical-to-electrical interface to increase achievable microwave power and reduces the corresponding thermal noise-limited phase noise by 6-dB. By analysing contributing noise sources, we also show that the thermal noise floor can reach - 166 dBc/Hz even at a low photocurrent of 2-mA (4-mW optical input per photodiode) when using a p-i-n BPD. This finding may be useful for on-chip microwave generation, which consists of standard p-i-n structure photodiodes with relatively low saturation optical power.

3.
Opt Lett ; 45(11): 3155-3158, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479483

RESUMO

Simple multicolor electro-optic sampling-based femtosecond synchronization of multiple mode-locked lasers is demonstrated. Parallel timing error detection between each laser and a common microwave is achieved by wavelength division multiplexing and demultiplexing. The parallel timing error detection enables simultaneous femtosecond synchronization of more than two mode-locked lasers to the microwave oscillator, even when the lasers have different repetition rates. The residual root-mean-square (rms) timing jitter of laser-laser synchronization measured by an optical cross correlator is 2.6 fs (integration bandwidth, 100 Hz-1 MHz), which is limited by the actuator bandwidth in the laser oscillator. The long-term rms timing drift and frequency instability of laser-microwave synchronization are 7.1 fs (over 10,000 s) and 5.5×10-18 (over 2000 s averaging time), respectively. As a versatile and reconfigurable tool for laser-laser and laser-microwave synchronization, the demonstrated method can be used for various applications ranging from ultrafast x-ray and electron science facilities to dual- and triple-comb spectroscopy.

4.
Sci Rep ; 8(1): 13875, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224734

RESUMO

Higher repetition-rate optical pulse trains have been desired for various applications such as high-bit-rate optical communication, photonic analogue-to-digital conversion, and multi-photon imaging. Generation of multi GHz and higher repetition-rate optical pulse trains directly from mode-locked oscillators is often challenging. As an alternative, harmonic injection locking can be applied for extra-cavity repetition-rate multiplication (RRM). Here we have investigated the operation conditions and achievable performances of all-fibre, highly tunable harmonic injection locking-based pulse RRM. We show that, with slight tuning of slave laser length, highly tunable RRM is possible from a multiplication factor of 2 to >100. The resulting maximum SMSR is 41 dB when multiplied by a factor of two. We further characterize the noise properties of the multiplied signal in terms of phase noise and relative intensity noise. The resulting absolute rms timing jitter of the multiplied signal is in the range of 20 fs to 60 fs (10 kHz-1MHz) for different multiplication factors. With its high tunability, simple and robust all-fibre implementation, and low excess noise, the demonstrated RRM system may find diverse applications in microwave photonics, optical communications, photonic analogue-to-digital conversion, and clock distribution networks.

5.
Opt Lett ; 43(16): 3997-4000, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106936

RESUMO

We demonstrate a simple all-fiber photonic phase detector that can measure the phase (timing) difference between an optical pulse train and a microwave signal with subfemtosecond resolution and -60 dB-level amplitude-to-phase conversion coefficient. It is based on passive phase biasing of a Sagnac loop by the intrinsic phase shift of a symmetric 3×3 fiber coupler. By eliminating the necessity of magneto-optic components or complex radio frequency (RF) electronics for phase biasing of the Sagnac loop, this phase detector has potential to be implemented as an integrated photonic device as well. When using this device for synchronization between a 250 MHz mode-locked Er-fiber laser and an 8 GHz microwave oscillator, the minimum residual phase noise floor reaches <-154 dBc/Hz (at 8 GHz carrier) with integrated root mean square (rms) timing jitter of 0.97 fs [1 Hz-1 MHz]. The long-term rms timing drift and frequency instability are 0.92 fs (over 5000 s) and 4×10-19 (at 10,000 s averaging time), respectively.

6.
Opt Lett ; 43(7): 1447-1450, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601001

RESUMO

We propose and demonstrate a new method which employs time-of-flight detection of femtosecond laser pulses for precise height measurement of large steps. By using time-of-flight detection with fiber-loop optical-microwave phase detectors, precise measurement of large step height is realized. The proposed method shows uncertainties of 15 nm and 6.5 nm at sampling periods of 40 ms and 800 ms, respectively. This method employs only one free-running femtosecond mode-locked laser and requires no scanning of laser repetition rate, making it easier to operate. Precise measurements of 6 µm and 0.5 mm step heights have been demonstrated, which show good functionality of this method for measurement of step heights.

7.
Sci Rep ; 7(1): 13305, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042647

RESUMO

Ultrahigh-resolution optical strain sensors provide powerful tools in various scientific and engineering fields, ranging from long-baseline interferometers to civil and aerospace industries. Here we demonstrate an ultrahigh-resolution fibre strain sensing method by directly detecting the time-of-flight (TOF) change of the optical pulse train generated from a free-running passively mode-locked laser (MLL) frequency comb. We achieved a local strain resolution of 18 pε/Hz1/2 and 1.9 pε/Hz1/2 at 1 Hz and 3 kHz, respectively, with large dynamic range of >154 dB at 3 kHz. For remote-point sensing at 1-km distance, 80 pε/Hz1/2 (at 1 Hz) and 2.2 pε/Hz1/2 (at 3 kHz) resolution is demonstrated. While attaining both ultrahigh resolution and large dynamic range, the demonstrated method can be readily extended for multiple-point sensing as well by taking advantage of the broad optical comb spectra. These advantages may allow various applications of this sensor in geophysical science, structural health monitoring, and underwater science.

8.
Sci Rep ; 7: 40917, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102352

RESUMO

Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10-9 fs2/Hz (equivalent to -174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA