Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893340

RESUMO

This research presents a novel method for the fabrication of mercapto reduced graphene oxide (m-RGO) Langmuir-Blodgett (LB) films without the need for specialized equipment. The conventional LB technique offers precise control over the deposition of thin films onto solid substrates, but its reliance on sophisticated instrumentation limits its accessibility. In this study, we demonstrate a simplified approach that circumvents the necessity for such equipment, thereby democratizing the production of m-RGO LB films. Thiolation of reduced graphene oxide (rGO) imparts enhanced stability and functionality to the resulting films, rendering them suitable for a wide range of applications in surface engineering, sensing, and catalysis. The fabricated m-RGO LB films exhibit favorable morphological, structural, and surface properties, as characterized by various analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, the performance of the m-RGO LB films is evaluated in terms of their surface wettability, electrochemical behavior, and chemical reactivity. The equipment-free fabrication approach presented herein offers a cost-effective and scalable route for the production of functionalized graphene-based thin films, thus broadening the scope for their utilization in diverse technological applications.

2.
Molecules ; 28(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241739

RESUMO

The preparation of mercapto-reduced graphene oxides (m-RGOs) via a solvothermal reaction using P4S10 as a thionating agent has demonstrated their potential as an absorbent for scavenging heavy metal ions, particularly Pb2+, from aqueous solutions due to the presence of thiol (-SH) functional groups on their surface. The structural and elemental analysis of m-RGOs was conducted using a range of techniques, including X-ray diffraction (XRD), Raman spectroscopy, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy equipped with energy-dispersive spectroscopy (STEM-EDS), and X-ray photoelectron spectroscopy (XPS). At pH 7 and 25 °C, the maximum adsorption capacity of Pb2+ ions on the surface of m-RGOs was determined to be approximately 858 mg/g. The heavy metal-S binding energies were used to determine the percent removal of the tested heavy metal ions, with Pb2+ exhibiting the highest percentage removal, followed by Hg2+ and Cd2+ ions having the lowest percent removal, and the binding energies observed were Pb-S at 346 kJ/mol, Hg-S at 217 kJ/mol, and Cd-S at 208 kJ/mol. The time-dependent removal study of Pb2+ ions also yielded promising results, with almost 98% of Pb2+ ions being removed within 30 min at pH 7 and 25 °C using a 1 ppm Pb2+ solution as the test solution. The findings of this study clearly demonstrate the potential and efficiency of thiol-functionalized carbonaceous material for the removal of environmentally harmful Pb2+ from groundwater.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616035

RESUMO

In this study, we demonstrate a new approach to easily prepare spinel Co3O4 nanoparticles (s-Co3O4 NPs) in the gram-scale from the cathode of spent lithium ion batteries (SLIBs) by the alkali leaching of hexaamminecobalt(III) complex ions. As-obtained intermediate and final products were characterized with powder X-ray diffraction (PXRD), Ultraviolet-Visible (UV-Vis), Fourier transform infrared (FTIR), and Transmission electron microscopy (TEM). Additionally, the synthesized s-Co3O4 NPs showed better electrocatalytic properties toward the oxygen evolution reaction (OER) in comparison to previously reported Co3O4 NPs and nanowires, which could be due to the more exposed electrocatalytic active sites on the s-Co3O4 NPs. Moreover, the electrocatalytic activity of the s-Co3O4 NPs was comparable to the previously reported RuO2 catalysts. By taking advantage of the proposed recycling route, we would expect that various valuable transition metal oxide NPs could be prepared from SLIBs.

4.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064350

RESUMO

We report synthesis and fabrication of highly thionated reduced graphene oxide and its Langmuir-Blodgett (LB) film without an LB trough. As the synthesized product, mercapto reduced graphene oxide (mRGO) contains high thiol content estimated from XPS, corresponding to a surface coverage of 1.3 SH/nm2. The mRGO LB film shows two electronic transport properties, following Efros-Shklovskii variable-range hopping (VRH) and Mott VRH at low and high temperature, respectively. Optical and band gap of the LB film was estimated from Tauc plot and semi-logarithmic-scale plot of sheet resistance versus temperature to be 0.6 and 0.1 eV, respectively. Additionally, the sheet resistance of the mRGO LB film depends on the quantity of the thiol functional group with the same transmittance at 550 nm (500 kΩ for mRGO, 1.3 MΩ for tRGO with 92% transmittance).

5.
Materials (Basel) ; 13(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326554

RESUMO

Ba2SiO4-δN2/3δ:Eu2+ (BSON:Eu2+) materials with different N3- contents were successfully prepared and characterized. Rietveld refinements showed that N3- ions were partially substituted for the O2- ions in the SiO4-tetrahedra because the bond lengths of Si‒(O,N) (average value = 1.689 Å) were slightly elongated compared with those of Si‒O (average value = 1.659 Å), which resulted in the minute compression of the Ba(2)‒O bond lengths from 2.832 to 2.810 Å. The average N3- contents of BSON:Eu2+ phosphors were determined from 100 nm to 2000 nm depth of grain using a secondary ion mass spectrometry (SIMS): 0.064 (synthesized using 100% α-Si3N4), 0.035 (using 50% α-Si3N4 and 50% SiO2), and 0.000 (using 100% SiO2). Infrared (IR) and X-ray photoelectron spectroscopy (XPS) measurements corroborated the Rietveld refinements: the new IR mode at 850 cm-1 (Si‒N stretching vibration) and the binding energy at 98.6 eV (Si-2p) due to the N3- substitution. Furthermore, in UV-region, the absorbance of N3--substituted BSON:Eu2+ (synthesized using 100% α-Si3N4) phosphor was about two times higher than that of BSO:Eu2+ (using 100% SiO2). Owing to the N3- substitution, surprisingly, the photoluminescence (PL) and LED-PL intensity of BSON:Eu2+ (synthesized using 100% α-Si3N4) was about 5.0 times as high as that of BSO:Eu2+ (using 100% SiO2). The compressive strain estimated by the Williamson-Hall (W-H) method, was slightly increased with the higher N3- content in the host-lattice of Ba2SiO4, which warranted that the N3- ion plays an important role in the highly enhanced PL intensity of BSON:Eu2+ phosphor. These phosphor materials could be a bridgehead for developing new phosphors and application in white NUV-LEDs field.

6.
J Am Chem Soc ; 140(45): 15176-15180, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30365303

RESUMO

Here, a highly selective solid-state nanocrystal conversion strategy is developed toward concave iron oxide (Fe3O4) nanocube with an open-mouthed cavity engraved exclusively on a single face. The strategy is based on a novel heat-induced nanospace-confined domino-type migration of Fe2+ ions from the SiO2-Fe3O4 interface toward the surrounding silica shell and concomitant self-limiting nanoscale phase-transition to the Fe-silicate form. Equipped with the chemically unique cavity, the produced Janus-type concave iron oxide nanocube was further functionalized with controllable density of catalytic Pt-nanocrystals exclusively on concave sites and utilized as a highly diffusive catalytic Janus nanoswimmer for the efficient degradation of pollutant-dyes in water.

7.
Acc Chem Res ; 51(11): 2867-2879, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30346727

RESUMO

The extensive research performed in the past two decades has enabled the production of a range of colloidal nanocrystals, mostly through solution-based procedures that generate and transform nanostructures in bulk-phase solutions containing precursors and surfactants. However, the understanding and control of each nanocrystal (trans)formation step during the synthesis are still complicated because of the high complexity of this process, in which multiple diverse events such as nucleation, subsequent growth, attachment, and ripening occur simultaneously in bulk suspensions. Unlike well-established solution-based methods, solid-state reactions, which had been at the forefront of traditional inorganic materials chemistry, are quite rarely utilized in the realm of nanomaterials because of the high temperatures required for most solid-state reactions, as a result of which the clusters and NCs are prone to migrate through the bulk reaction medium and sinter together uncontrollably into large particles. We have been pursuing the "nanospace-confined approach" to explore the use of a variety of solid and hollow silica nanoparticles as either solid-state or solution-phase reaction media to carry out the syntheses and transformations of nanocrystals in a unique microenvironment, partitioning the reactants, intermediates, and transition states from the rest of the bulk reaction medium. Such nanoconfined systems have the potential not only to enable efficient and selective nanocrystal conversion chemistries but also to provide fundamental understanding pertaining to the synthetic evolution of nanostructures and transient mechanistic steps. The unique spaces with sizes of a few tens of nanometers inside nanoconfined systems offer the opportunity to observe and elucidate novel deconvoluted chemical phenomena that are impossible to investigate in bulk systems, and comprehensive understanding of nanoconfined chemistry can be implicated in explaining and controlling the macroscopic chemical behaviors. This Account describes our focused research on developing spatially confined platforms for nanocrystal syntheses and transformations, highlighting our diversity-oriented strategy, namely, the "postdecoration approach", which results in the evolution of new nanocatalytic sites in a preformed cavity for diversifying and controlling their morphologies, number, density and combinations. We discuss key examples of the "nanoconfined solid-state conversion approach" that involve novel reactions of nanocrystals within thermally stable solid silica nanospheres to synthesize and transform complex hybrid nanocrystals with increased complexity and functionality. In addition, an enlightening discussion of the examples of nanocrystal syntheses and conversions in nanoconfined solutions inside enclosed and exposed cavities of silica nanospheres is included. Finally, the important applications of nanospace-confined systems in various fields are also briefly discussed.

8.
Small ; 14(36): e1802174, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30079587

RESUMO

This paper proposes a confined solid-state conversion approach using layered metal-hydroxides for the production of a colloidal suspension of porous 2D crystalline metal oxide layers with superior electrochemical H2 O2 sensing performance. This study investigates the conversion chemistry of delaminated layers of gadolinium hydroxide (LGdH), [Gd2 (OH)5 ]+ , encapsulated in a silica nanoshell that provides an antistacking and antisintering environment during the phase-transition at high temperature. Thermal treatment of the LGdH layers within the protected environment results in a dimensionally confined phase-transition into crystalline Gd2 O3 nanosheets with an isomorphic 2D structure. Furthermore, annealing at higher temperatures leads to the evolution of in-plane mesoporous structure on the Gd2 O3 nanosheet. Based on insight acquired from in-depth investigation, the evolution of in-plane porosity proceeds through the in-plane dominant silicate-formation reaction at the interface with the surrounding silica shell. Their 2D-anisotropic and mesoporous morphological features are preserved, producing a colloidal suspension of holey nanosheets that can be used to fabricate a thin and porous film through wet-coating deposition. This study also demonstrates the superior electrochemical H2 O2 sensing ability of the resultant porous Gd2 O3 film, which represents a ≈1000- and 10-fold enhancement of the detection limit and sensitivity, respectively, in comparison to previously reported Gd2 O3 films.

9.
ACS Appl Mater Interfaces ; 9(24): 20728-20737, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28594160

RESUMO

Although the deposition of metallic domains on a preformed semiconductor nanocrystal provides an effective pathway to access diverse hybrid nanocrystals with synergistic metal/semiconductor heterojunction interface, those reactions that take place on the surface of semiconductor nanoscrystals have not been investigated thoroughly, because of the impediments caused by the surface-capping organic surfactants. By exploiting the interfacial reactions occurring between the solution and nanoparticles confined with the cavities of hollow nanoparticles, we propose a novel nanospace-confined strategy for assessing the innate reactivity of surfaces of inorganic semiconductor nanoparticles. This strategy was adopted to investigate the newly discovered process of spontaneous Pt deposition on In2O3 nanocrystals. Through an in-depth examination involving varying key reaction parameters, the Pt deposition process was identified to be templated by the defective In2O3 surface via a unique redox process involving the oxygen vacancies in the In2O3 lattice, whose density can be controlled by high-temperature annealing. The product of the Pt-deposition reaction inside the hollow silica nanoparticle, bearing In2O3-supported Pt catalysts inside the cavity protected by a porous silica shell, was proved to be an effective nanoreactor system which selectively and sustainably catalyzed the reduction reaction of small-sized aromatic nitro-compounds. Moreover, the surfactant-free and electroless Pt deposition protocol, which was devised based on the surface chemistry of the In2O3 nanoparticles, was successfully employed to fabricate Pt-catalyst-modified ITO electrodes with enhanced electrogenerated chemiluminescece (ECL) performance.

10.
ACS Appl Mater Interfaces ; 8(33): 21539-44, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27482604

RESUMO

The potential electrochromic application of graphene-based nanohybrids is hampered by the challenges in interfacing the electrochromic nanoparticles with graphene at atomic scale and in fabricating their thin film on the substrate through a scalable method. In an effort to overcome these challenges, we demonstrate a highly dispersible graphene-based molybdenum oxide nanohybrid (mRGO-MoO3-x) for flexible electrochromic application. With only a squeeze pipet, mRGO-MoO3-x could be deposited with a high coverage on various substrates through a scalable equipment-free Langmuir-Blodgett film deposition method. By taking advantage of high transmittance benefited from its remarkable thinness, the mRGO-MoO3-x Langmuir-Blodgett film shows a superior reversible electrochromic property with high coloration efficiency on both hard and flexible substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA