Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36837795

RESUMO

Cervicovaginal fluid (CVF) is an excellent specimen for monitoring preterm birth (PTB) as it characterizes cervical metabolites, the vaginal environment, and specific host immune responses. However, extensive lipid analysis of CVF to explain PTB has not been studied. In this study, we performed a systematic analysis combining high-throughput lipid analysis and omics to discover the unique metabolic properties of the cervix. Liquid chromatography-high resolution mass spectrometry successfully detected a total of 190 lipids in the CVF of 30 PTB and 30 term birth (TB) pregnant women. The whole lipidomics dataset analyzed by combining multivariate and univariate statistical analysis revealed 35 lipid biomarkers, including phospholipids and sphingolipids. Remarkably, sphingomyelin, which plays a physiologically essential role in sphingolipids, was significantly downregulated in PTB. Metabolic pathway study provides a close relationship between vaginal microbial organization and cell membrane formation, further supporting the robustness of our findings. Sphingolipids and phospholipids, which were determined to be important lipids for predicting PTB in our study, showed a high value of receiver operating characteristic (ROC) curve >0.7, indicating that a lipid diagnostic test and understanding the mechanism of lipids is highly related to the vaginal microbiome. Therefore, our result has high potential as a predictor of PTB.

2.
Toxics ; 11(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36850976

RESUMO

Novel brominated flame retardants (NBFRs) are widely used to avoid environmental accumulation concerns and because of the regulations imposed on classical BFRs. However, recent studies have not revealed the negative effects of NBFR accumulation and exposure on humans. We conducted a metabolomics study on hexabromobenzene (HBB), one of the NBFRs, to investigate its effect on hepatocytes. Gas chromatography-mass spectrometry-based metabolite profiling was performed to observe metabolic perturbations by treating human livertissue-derived HepG2 cell lines with HBB for maximum 21 days. Metabolic pathway enrichment using 17 metabolite biomarkers determined via univariate and multivariate statistical analysis verified that long-term accumulation of HBB resulted in distinct diminution of eight amino acids and five other metabolites. Molecular docking of the biomarker-related enzymes revealed the potential molecular mechanism of hepatocellular response to HBB exposure, which disrupts the energy metabolism of hepatic cells. Collectively, this study may provide insights into the hidden toxicity of bioaccumulating HBB and unveil the risks associated with non-regulated NBFRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA