Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 49(4): e315, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408750

RESUMO

Spermatogonial stem cells (SSCs) are germline stem cells located along the basement membrane of seminiferous tubules in testes. Recently, SSCs were shown to be reprogrammed into multipotent SSCs (mSSCs). However, both the key factors and biological networks underlying this reprogramming remain elusive. Here, we present transcriptional regulatory networks (TRNs) that control cellular processes related to the SSC-to-mSSC reprogramming. Previously, we established intermediate SSCs (iSSCs) undergoing the transition to mSSCs and generated gene expression profiles of SSCs, iSSCs and mSSCs. By comparing these profiles, we identified 2643 genes that were up-regulated during the reprogramming process and 15 key transcription factors (TFs) that regulate these genes. Using the TF-target relationships, we developed TRNs describing how these TFs regulate three pluripotency-related processes (cell proliferation, stem cell maintenance and epigenetic regulation) during the reprogramming. The TRNs showed that 4 of the 15 TFs (Oct4/Pou5f1, Cux1, Zfp143 and E2f4) regulated cell proliferation during the early stages of reprogramming, whereas 11 TFs (Oct4/Pou5f1, Foxm1, Cux1, Zfp143, Trp53, E2f4, Esrrb, Nfyb, Nanog, Sox2 and Klf4) regulated the three pluripotency-related processes during the late stages of reprogramming. Our TRNs provide a model for the temporally coordinated transcriptional regulation of pluripotency-related processes during the SSC-to-mSSC reprogramming, which can be further tested in detailed functional studies.


Assuntos
Reprogramação Celular , Redes Reguladoras de Genes , Células-Tronco Pluripotentes/citologia , Espermatogônias/citologia , Animais , Proliferação de Células/genética , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Células-Tronco Pluripotentes/metabolismo , Espermatogônias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
2.
Mol Cells ; 38(10): 895-903, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26442865

RESUMO

Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.


Assuntos
Embrião de Mamíferos/metabolismo , Células Germinativas/crescimento & desenvolvimento , MicroRNAs/genética , RNA Mensageiro/genética , Testículo/metabolismo , Animais , Northern Blotting , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Biochem Biophys Res Commun ; 466(2): 180-5, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26343459

RESUMO

Fanconi anemia (FA) is a recessively inherited multigene disease characterized by congenital defects, progressive bone marrow failure, and heightened cancer susceptibility. Monoubiquitination of the FA pathway member FANCD2 contributes to the repair of replication stalling DNA lesions. However, cellular regulation of FANCD2 monoubiquitination remains poorly understood. In the present study, we identified the miR-302 cluster as a potential regulator of FANCD2 by bioinformatics analysis. MicroRNAs (miRNAs) are the major posttranscriptional regulators of a wide variety of biological processes, and have been implicated in a number of diseases. Expression of the exogenous miR-302 cluster (without miR-367) reduced FANCD2 monoubiquitination and nuclear foci formation. Furthermore, miR-302 cells showed extensive chromosomal breakage upon MMC treatment when compared to mock control cells. Taken together, our results suggest that overexpression of miR-302 plays a critical role in the regulation of FANCD2 monoubiquitination, resulting in characteristic defects in DNA repair within cells.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Humanos , Ubiquitinação
4.
Biochim Biophys Acta ; 1849(8): 1081-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26149774

RESUMO

Skeletal muscle cell differentiation requires a family of proteins called myogenic regulatory factors (MRFs) to which MyoD belongs. The activity of MyoD is under epigenetic regulation, however, the molecular mechanism by which histone KMTs and KDMs regulate MyoD transcriptional activity through methylation remains to be determined. Here we provide evidence for a unique regulatory mechanism of MyoD transcriptional activity through demethylation by Jmjd2C demethylase whose level increases during muscle differentiation. G9a decreases MyoD stability via methylation-dependent MyoD ubiquitination. Jmjd2C directly associates with MyoD in vitro and in vivo to demethylate and stabilize MyoD. The hypo-methylated MyoD due to Jmjd2C is significantly more stable than hyper-methylated MyoD by G9a. Cul4/Ddb1/Dcaf1 pathway is essential for the G9a-mediated MyoD degradation in myoblasts. By the stabilization of MyoD, Jmjd2C increases myogenic conversion of mouse embryonic fibroblasts and MyoD transcriptional activity with erasing repressive H3K9me3 level at the promoter of MyoD target genes. Collectively, Jmjd2C increases MyoD transcriptional activity to facilitate skeletal muscle differentiation by increasing MyoD stability through inhibiting G9a-dependent MyoD degradation.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteína MyoD/metabolismo , Oxirredutases N-Desmetilantes/fisiologia , Ativação Transcricional , Animais , Diferenciação Celular/genética , Células Cultivadas , Regulação para Baixo , Epigênese Genética/fisiologia , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Proteína MyoD/fisiologia , Mioblastos/fisiologia , Proteólise
5.
Biochim Biophys Acta ; 1849(6): 709-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725482

RESUMO

The ubiquitin-proteasome system (UPS) plays an important role in protein quality control, cellular signalings, and cell differentiation through the regulated turnover of key transcription factors in cardiac tissue. However, the molecular mechanism underlying Fbxo25-mediated ubiquitination of cardiac transcription factors remains elusive. We report that an Fbxo25-mediated SCF ubiquitination pathway regulates the protein levels and activities of Tbx5 and Nkx2-5 based on our studies using MG132, proteasome inhibitor, and the temperature sensitive ubiquitin system in ts20 cells. Our data indicate that Fbxo25 directly interacts with Tbx5 and Nkx2-5 in vitro and in vivo. In support of our findings, a dominant-negative mutant of Fbxo25, Fbxo251-236, prevents Tbx5 degradation and increases Tbx5 transcriptional activity in a Tbx5 responsive luciferase assay. Therefore, Fbxo25 facilitates Tbx5 degradation in an SCF-dependent manner. In addition, the silencing of endogenous Fbxo25 increases Tbx5 and Nkx2-5 mRNA levels and suppresses mESC-derived cardiomyocyte differentiation. Likewise, the exogenous expression of FBXO25 downregulates NKX2-5 level in human ESC-derived cardiomyocytes. In myocardial infarction model, Fbxo25 mRNA decreases, whereas the mRNA and protein levels of Tbx5 and Nkx2-5 increase. The protein levels of Tbx5 and Nkx2-5 are regulated negatively by Fbxo25-mediated SCF ubiquitination pathway. Thus, our findings reveal a novel mechanism for regulation of SCFFbox25-dependent Nkx2-5 and Tbx5 ubiquitination in cardiac development and provide a new insight into the regulatory mechanism of Nkx2-5 and Tbx5 transcriptional activity.


Assuntos
Diferenciação Celular/genética , Proteínas F-Box/genética , Proteínas de Homeodomínio/genética , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Animais , Células-Tronco Embrionárias , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/biossíntese , Humanos , Leupeptinas/administração & dosagem , Camundongos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Proteínas Ligases SKP Culina F-Box , Proteínas com Domínio T/biossíntese , Fatores de Transcrição/biossíntese , Ativação Transcricional/efeitos dos fármacos
6.
Int J Stem Cells ; 7(2): 162-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25473455

RESUMO

The microRNAs (miRNAs) are small, non-coding RNAs that modulate protein expression by interfering with target mRNA translation or stability. miRNAs play crucial roles in various functions such as cellular, developmental, and physiological processes. The spatial expression patterns of miRNAs are very essential for identifying their functions. The expressions of miR-302 and miR-367 are critical in maintaining stemness of pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) but their functions in early development are not fully elucidated. So, we used Locked Nucleic Acid (LNA) probes to perform in situ hybridization and confirmed the temporal and spatial distribution patterns during early chick development. As a result, we found that miR-302 and miR-367 were expressed in various tissues such as primitive steak, neural ectoderm, neural plate, neural fold, neural tube, notochord, and oral cavity. Specially, we confirmed that miR-302 and miR-367 were strongly expressed in neural folds in HH8 to HH10. miR-302 was expressed on dorsal part of the neural tube but miR-367 was expressed on lateral and ventral parts of the neural tube. And also we performed quantitative stem-loop real-time PCR to analyze global expression level of miR-302 and miR-367. miR-302 and miR-367 expression was sustained before Hamburger and Hamilton stage (HH) 14. Thus, the temporal and spatial expression patterns of miR-302 and miR-367 may provide us information of the role of these miRNAs on tissue formation during early chick development.

7.
World J Gastroenterol ; 18(18): 2231-7, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22611317

RESUMO

AIM: To investigate the relationship between plasma acylated ghrelin levels and the pathophysiology of functional dyspepsia. METHODS: Twenty-two female patients with functional dyspepsia and twelve healthy volunteers were recruited for the study. The functional dyspepsia patients were each diagnosed based on the Rome III criteria. Eligible patients completed a questionnaire concerning the severity of 10 symptoms. Plasma acylated ghrelin levels before and after a meal were determined in the study participants using a commercial human acylated enzyme immunoassay kit; electrogastrograms were performed for 50 min before and after a standardized 10-min meal containing 265 kcal. RESULTS: There were no significant differences in plasma acylated ghrelin levels between healthy volunteers and patients with functional dyspepsia. However, in patients with functional dyspepsia, there was a negative correlation between fasting plasma acylated ghrelin levels and the sum score of epigastric pain (r = -0.427, P = 0.047) and a positive correlation between the postprandial/fasting plasma acylated ghrelin ratio and the sum score of early satiety (r = 0.428, P =0.047). Additionally, there was a negative correlation between fasting acylated ghrelin plasma levels and fasting normogastria (%) (r = -0.522, P = 0.013). Interestingly, two functional dyspepsia patients showed paradoxically elevated plasma acylated ghrelin levels after the meal. CONCLUSION: Abnormal plasma acylated ghrelin levels before or after a meal may be related to several of the dyspeptic symptoms seen in patients with functional dyspepsia.


Assuntos
Dor Abdominal/sangue , Dor Abdominal/etiologia , Dispepsia/sangue , Dispepsia/complicações , Grelina/sangue , Dor Abdominal/diagnóstico , Dor Abdominal/fisiopatologia , Acilação , Adulto , Estudos de Casos e Controles , Dispepsia/diagnóstico , Dispepsia/fisiopatologia , Eletrodiagnóstico , Feminino , Humanos , Técnicas Imunoenzimáticas , Pessoa de Meia-Idade , Medição da Dor , Período Pós-Prandial , Estudos Prospectivos , Processamento de Proteína Pós-Traducional , República da Coreia , Índice de Gravidade de Doença , Estômago/fisiopatologia , Adulto Jovem
8.
J Korean Med Sci ; 20(4): 628-35, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16100456

RESUMO

Latent transforming growth factor (TGF)-beta-binding protein (LTBP) is required for the assembly, secretion, matrix association, and activation of latent TGF-beta complex. To elucidate the cell specific expression of the genes of LTBP-1 and their splice variants and the factors that regulate the gene expression, we cultured primary human glomerular endothelial cells (HGEC) under different conditions. Basal expression of LTBP-1 mRNA was suppressed in HGEC compared to WI-38 human embryonic lung fibroblasts. High glucose, H(2)O(2), and TGF-beta1 upregulated and vascular endothelial growth factor (VEGF) further downregulated LTBP-1 mRNA in HGEC. RT-PCR with a primer set for LTBP-1S produced many clones but no clone was gained with a primer set for LTBP-1L. Of 12 clones selected randomly, Sca I mapping and DNA sequencing revealed that only one was LTBP-1S and all the others were LTBP-1Sdelta53. TGF-beta1, but not high glucose, H(2)O(2) or VEGF, tended to increase LTBP-1Sdelta53 mRNA. In conclusion, HGEC express LTBP-1 mRNA which is suppressed at basal state but upregulated by high glucose, H(2)O(2), and TGF-beta1 and downregulated by VEGF. Major splice variant of LTBP-1 in HGEC was LTBP-1S 53. Modification of LTBP-1S 53 gene in HGEC may abrogate fibrotic action of TGF-beta1 but this requires confirmation.


Assuntos
Processamento Alternativo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transcrição Gênica , Sequência de Aminoácidos , Linhagem Celular , Células Cultivadas , Clonagem Molecular , Células Endoteliais/efeitos dos fármacos , Glucose/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Glomérulos Renais/citologia , Proteínas de Ligação a TGF-beta Latente , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA