Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069425

RESUMO

Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3ß, ß-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.


Assuntos
Glucosídeos , Osteogênese , Diferenciação Celular , Glucosídeos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Osteoblastos/metabolismo
2.
iScience ; 26(10): 107877, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37810235

RESUMO

Aging triggers spinal degeneration, including common spinal stenosis, which causes back and leg pain in older individuals, significantly impacting their quality of life. Here, we explored aging traits in turquoise killifish spines, potentially offering a model for age-linked spinal stenosis in humans. Aged turquoise killifish exhibited body shape deformation and increased vertebral collapse, which was further accelerated by spawning. High-resolution CT scans revealed suppressed cortical bone thickness and hemal arch area in vertebrae due to spawning, and osteophyte formation was observed in both aged and breeding fish populations. Scale mineralization mirrored these changes, increasing with age but being suppressed by spawning. The expression of sp7, sox9b, axin1, and wnt4a/b genes can be utilized to monitor age- and reproduction-dependent spine deformation. This study demonstrates that turquoise killifish and humans share certain phenotypes of age-related vertebral abnormalities, suggesting that turquoise killifish could serve as a potential model for studying human spinal stenosis.

3.
J Ethnopharmacol ; 302(Pt A): 115940, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36384207

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Echinosophora koreensis Nakai is an endemic plant species distributed in a limited area within the Korean province of Gangwon, including the Yanggu-gun, Inje-gun, Cheorwon-gun, Chuncheon-si, and Hongcheon-gun counties. It is used in traditional medicine to treat various disorders, such as fever, skin diseases, diuresis, and neuralgia. MATERIALS AND METHODS: This study demonstrated the effects of E. koreensis Nakai root extract (EKRE) on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Cell viability was assessed through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Nitric oxide (NO) production was measured using Griess reagent. Interleukin (IL)-6 and tumor necrosis factor (TNF) levels were assessed using enzyme-linked immunosorbent assays. Inducible nitric oxide synthase (iNOS), nuclear factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) expression were assessed using Western blot analysis. To examine the effects of EKRE in vivo, it was administered orally at doses of 50 or 200 mg/kg for 3 days in mice. Edema in the paws was induced through λ-carrageenan injection and measured hourly for up to 5 h using calipers. RESULTS: EKRE markedly suppressed LPS-generated NO, IL-6, and iNOS production in RAW 264.7 cells. Moreover, it suppressed the activation of the NF-κB and MAPK in LPS-stimulated cells. Furthermore, EKRE significantly inhibited carrageenan-induced edema in mouse paws. There were no significant differences in IL-6 and TNF production in paw tissue harvested from mice, but levels decreased at high EKRE concentrations (200 mg/kg). CONCLUSION: The results of this study provided validation for EKRE-induced inhibition of inflammatory responses in vitro and in vivo. This research suggested that EKRE is a promising treatment for inflammatory disorders.


Assuntos
Anti-Inflamatórios , Fabaceae , Extratos Vegetais , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Carragenina , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Fabaceae/química , Interleucina-6 , Lipopolissacarídeos , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B , Óxido Nítrico , Extratos Vegetais/farmacologia , Células RAW 264.7
4.
Front Microbiol ; 13: 1026513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274711

RESUMO

Presently, pertinent information on the ultra-small microbiome (USM) in fermented vegetables is still lacking. This study analyzed the metatranscriptome and metataxonome for the USM of kimchi. Tangential flow filtration was used to obtain a USM with a size of 0.2 µm or less from kimchi. The microbial diversity in the USM was compared with that of the normal microbiome (NM). Alpha diversity was higher in the USM than in NM, and the diversity of bacterial members of the NM was higher than that of the USM. At the phylum level, both USM and NM were dominated by Firmicutes. At the genus level, the USM and NM were dominated by Lactobacillus, Leuconostoc, and Weissella, belonging to lactic acid bacteria. However, as alpha diversity is higher in the USM than in the NM, the genus Akkermansia, belonging to the phylum Verrucomicrobia, was detected only in the USM. Compared to the NM, the USM showed a relatively higher ratio of transcripts related to "protein metabolism," and the USM was suspected to be involved with the viable-but-nonculturable (VBNC) state. When comparing the sub-transcripts related to the "cell wall and capsule" of USM and NM, USM showed a proportion of transcripts suspected of being VBNC. In addition, the RNA virome was also identified, and both the USM and NM were confirmed to be dominated by pepper mild mottle virus (PMMoV). Additionally, the correlation between metataxonome and metatranscriptome identified USM and NM was estimated, however, only limited correlations between metataxonome and metatranscriptome were estimated. This study provided insights into the relationship between the potential metabolic activities of the USM of kimchi and the NM.

5.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080161

RESUMO

Growth and maintenance of skeletal muscle is essential for athletic performance and a healthy life. Stimulating the proliferation and differentiation of muscle cells may help prevent loss of muscle mass. To discover effective natural substances enabling to mitigate muscle loss without side effects, we evaluated muscle growth with several compounds extracted from Catalpa bignonioides Walt. Among these compounds, pinoresinol and vanillic acid increased C2C12, a mouse myoblast cell line, proliferation being the most without cytotoxicity. These substances activated the Akt/mammalian target of the rapamycin (mTOR) pathway, which positively regulates the proliferation of muscle cells. In addition, the results of in silico molecular docking study showed that they may bind to the active site of insulin-like growth factor 1 receptor (IGF-1R), which is an upstream of the Akt/mTOR pathway, indicating that both pinoresinol and vanillic acid stimulate myoblast proliferation through direct interaction with IGF-1R. These results suggest that pinoresinol and vanillic acid may be a natural supplement to improve the proliferation of skeletal muscle via IGF-1R/Akt/mTOR signaling and thus strengthen muscles.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Ácido Vanílico , Animais , Proliferação de Células , Furanos , Fator de Crescimento Insulin-Like I/metabolismo , Lignanas , Mamíferos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacologia
6.
Biosensors (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940228

RESUMO

Tumor angiogenesis is enhanced in all types of tumors to supply oxygen and nutrients for their growth and metastasis. With the development of anti-angiogenic drugs, the importance of technology that closely monitors tumor angiogenesis has also been emerging. However, to date, the technology for observing blood vessels requires specialized skills with expensive equipment, thereby limiting its applicability only to the laboratory setting. Here, we used a preclinical optical imaging system for small animals and, for the first time, observed, in real time, the entire process of blood vessel development in tumor-bearing mice injected with indocyanine green. Time-lapse sequential imaging revealed blood vessel volume and blood flow dynamics on a microscopic scale. Upon analyzing fluorescence dynamics at each stage of tumor progression, vessel volume and blood flow were found to increase as the tumor developed. Conversely, these vascular parameters decreased when the mice were treated with angiogenesis inhibitors, which suggests that the effects of drugs targeting angiogenesis can be rapidly and easily screened. The results of this study may help evaluate the efficacy of angiogenesis-targeting drugs by facilitating the observation of tumor blood vessels easily in a laboratory unit without large and complex equipment.


Assuntos
Neoplasias , Preparações Farmacêuticas , Inibidores da Angiogênese/uso terapêutico , Animais , Camundongos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Imagem Óptica
7.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451869

RESUMO

Juglans mandshurica Maxim., a traditional folk medicinal plant, is widely distributed in Korea and China. In our previous study, we isolated a new phenylpropanoid compound, 4-((1R,2R)-3-hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol (HHMP), from J. mandshurica. In the present study, we evaluated the anti-inflammatory activity of HHMP on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and zebrafish larvae. HHMP significantly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 production in a dose-dependent manner. Moreover, HHMP treatment considerably suppressed LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. We also demonstrated the mechanisms of HHMP inhibition of inflammatory responses in LPS-stimulated RAW 264.7 cells via Western blot analysis and immunofluorescence staining. Furthermore, HHMP significantly inhibited NO production in LPS-stimulated zebrafish larvae. Consequently, we established that HHMP significantly inhibited the LPS-induced activation of NF-κB and MAPK and the nuclear translocation of p65 in RAW 264.7 cells. Taken together, our findings demonstrate the effect of HHMP on LPS-induced inflammatory responses in vitro and in vivo, suggesting its potential to be used as a natural anti-inflammatory agent.

8.
iScience ; 24(2): 102104, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33615202

RESUMO

Systematic control of in vivo behavior of protein-based therapeutics is considered highly desirable for improving their clinical outcomes. Modulation of biochemical properties including molecular weight, surface charge, and binding affinity has thus been suggested to enhance their therapeutic effects. However, establishing a relationship between the binding affinity and tumor localization remains a debated issue. Here we investigate the influence of the binding affinity of proteins on tumor localization by using four repebodies having different affinities to EGFR. Biochemical analysis and molecular imaging provided direct evidence that optimal affinity with balanced target binding and dissociation can facilitate deep penetration and accumulation of protein binders in tumors by overcoming the binding-site-barrier effect. Our findings suggest that binding kinetics-based protein design can be implicated in the development of fine-tuned protein therapeutics for cancers.

9.
Angew Chem Int Ed Engl ; 59(40): 17548-17555, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-33026161

RESUMO

Aberrantly elevated steroid receptor coactivator-1 (SRC-1) expression and activity are strongly correlated with cancer progression and metastasis. Here we report, for the first time, the development of a proteolysis targeting chimera (PROTAC) that is composed of a selective SRC-1 binder linked to a specific ligand for UBR box, a unique class of E3 ligases recognizing N-degrons. We showed that the bifunctional molecule efficiently and selectively induced the degradation of SRC-1 in cells through the N-degron pathway. Importantly, given the ubiquitous expression of the UBR protein in most cells, PROTACs targeting the UBR box could degrade a protein of interest regardless of cell types. We also showed that the SRC-1 degrader significantly suppressed cancer cell invasion and migration in vitro and in vivo. Together, these results demonstrate that the SRC-1 degrader can be an invaluable chemical tool in the studies of SRC-1 functions. Moreover, our findings suggest PROTACs based on the N-degron pathway as a widely useful strategy to degrade disease-relevant proteins.


Assuntos
Coativador 1 de Receptor Nuclear/antagonistas & inibidores , Peptídeos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biocatálise , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/prevenção & controle , Neoplasias/tratamento farmacológico , Coativador 1 de Receptor Nuclear/metabolismo , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
10.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053881

RESUMO

Acute myeloid leukemia (AML) is an aggressive type of human leukemia with a low survival rate, and its complete remission remains challenging. Although chemotherapy is the first-line treatment of AML, it exerts toxicity in noncancerous cells when used in high doses, thus necessitating the development of novel compounds with a high therapeutic window. This study aimed to investigate the anticancer effects of several compounds derived from the fruits of Melia azedarach (a tree with medicinal properties). Among them, 1-cinnamoyltrichilinin (CT) was found to strongly suppress the viability of HL-60 human leukemia cells. CT treatment induced apoptosis and increased nuclear fragmentation and fractional DNA content in HL-60 cells in a dose-dependent manner. CT induced phosphorylation of p38 mitogen-activated protein kinases (p38), though not of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), and activated Bcl-2 family proteins towards the proapoptosis and cleavage of caspase-3 and poly (ADP-ribose) polymerase. Both CT-mediated apoptosis and apoptotic protein expression were reversed by treatment with the p38 inhibitor, thereby indicating the p38 pathway to be critical in CT-stimulated apoptosis. The results collectively indicated CT to suppress HL-60 survival by activating the p38 pathway and inducing apoptosis, hence being a novel potential therapeutic agent for AML.


Assuntos
Apoptose/efeitos dos fármacos , Limoninas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melia azedarach/química , Extratos Vegetais/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Limoninas/química , Estrutura Molecular , Extratos Vegetais/química
11.
Cancer Res ; 79(4): 795-806, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30610087

RESUMO

Tumor hypoxia and aerobic glycolysis are well-known resistance factors for anticancer therapies. Here, we demonstrate that tumor-associated macrophages (TAM) enhance tumor hypoxia and aerobic glycolysis in mice subcutaneous tumors and in patients with non-small cell lung cancer (NSCLC). We found a strong correlation between CD68 TAM immunostaining and PET 18fluoro-deoxyglucose (FDG) uptake in 98 matched tumors of patients with NSCLC. We also observed a significant correlation between CD68 and glycolytic gene signatures in 513 patients with NSCLC from The Cancer Genome Atlas database. TAM secreted TNFα to promote tumor cell glycolysis, whereas increased AMP-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1-alpha in TAM facilitated tumor hypoxia. Depletion of TAM by clodronate was sufficient to abrogate aerobic glycolysis and tumor hypoxia, thereby improving tumor response to anticancer therapies. TAM depletion led to a significant increase in programmed death-ligand 1 (PD-L1) expression in aerobic cancer cells as well as T-cell infiltration in tumors, resulting in antitumor efficacy by PD-L1 antibodies, which were otherwise completely ineffective. These data suggest that TAM can significantly alter tumor metabolism, further complicating tumor response to anticancer therapies, including immunotherapy. SIGNIFICANCE: These findings show that tumor-associated macrophages can significantly modulate tumor metabolism, hindering the efficacy of anticancer therapies, including anti-PD-L1 immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Glicólise , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Hipóxia Tumoral/imunologia , Animais , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Prognóstico , Linfócitos T/imunologia , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/metabolismo
12.
Radiat Res ; 190(5): 558-564, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142031

RESUMO

Radioenhancement of gold nanoparticles (GNPs) has shown great potential for increasing the therapeutic efficiency of radiotherapy. Here we report on a computational model of radiation response, which was developed to predict the survival curves of breast cancer cells incubated with GNPs. The amount of GNP uptake was estimated using inductively coupled plasma-mass spectroscopy, and the three-dimensional (3D) intracellular distribution of GNPs was obtained using optical diffraction tomography. The developed computational model utilized the 3D live cell imaging and recent Monte Carlo techniques to calculate microscopic dose distributions within the cell. Clonogenic assays with and without GNPs were performed to estimate the radioenhancement for 150 kVp X rays in terms of cell survival fractions. Measured cell survival fractions were comparable with the computational model.


Assuntos
Simulação por Computador , Ouro/química , Nanopartículas Metálicas/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Feminino , Humanos , Imageamento Tridimensional , Método de Monte Carlo , Tomografia/métodos
13.
Radiat Oncol J ; 34(4): 239-249, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28030900

RESUMO

Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of 'reoxygenation' phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because 'reoxygenation' is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn't it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy.

14.
Blood Res ; 51(3): 157-163, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27722125

RESUMO

Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA