Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 11(18): 6299-6310, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551440

RESUMO

Phosphate-based glass (PBG) is a bioactive agent, composed of a glass network with phosphate as the primary component and can be substituted with various therapeutic ions for functional enhancement. Strontium (Sr) has been shown to stimulate osteogenic activity and inhibit pro-inflammatory responses. Despite this potential, there are limited studies that focus on the proportion of Sr substituted and its impact on the functional activity of resulting Sr-substituted PBG (PSr). In this study, focusing on the cellular biological response we synthesized and investigated the functional activity of PSr by characterizing its properties and comparing the effect of Sr substitution on cellular bioactivity. Moreover, we benchmarked the optimal composition against 45S5 bioactive glass (BG). Our results showed that PSr groups exhibited a glass structure and phosphate network like that of PBG. The release of Sr and P was most stable for PSr6, which showed favorable cell viability. Furthermore, PSr6 elicited excellent early osteogenic marker expression and inhibition of pro-inflammatory cytokine expression, which was significant compared to BG. In addition, compared to BG, PSr6 had markedly higher expression of osteopontin in immunocytochemistry, higher ALP expression in osteogenic media, and denser alizarin red staining in vitro. We also observed a comparable in vivo regenerative response in a 4-week rabbit calvaria defect model. Therefore, based on the results of this study, PSr6 could be identified as the functionally optimized composition with the potential to be applied as a valuable bioactive component of existing biomaterials used for bone regeneration.


Assuntos
Regeneração Óssea , Osteogênese , Animais , Coelhos , Linhagem Celular , Fosfatos , Estrôncio/farmacologia , Estrôncio/química , Vidro/química
2.
Clin Oral Investig ; 25(2): 497-505, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32556578

RESUMO

OBJECTIVES: This study investigated the effectiveness of acid etching and bond strength in an orthodontic bonding system in accordance with various time periods after 1.23% acidulated phosphate fluoride (APF) gel applications. MATERIALS AND METHODS: APF gel was applied on the enamel surface of bovine teeth, which were assigned to group F0. The tooth specimens were then immersed in distilled water for 1 (F1), 7 (F7), 14 (F14), 21 (F21) and 28 (F28) days. A group without fluoride pretreatment was a control group. All groups were etched with 35% phosphoric acid and evaluated using a surface hardness tester and scanning electron microscope (SEM). A shear bond strength (SBS) test was performed using a universal testing machine, and the bond failure modes were also examined. RESULTS: After the 1.23% APF gel treatment, the hardness of the acid-etched enamel surface decreased as the immersion period increased. SEM images of the test groups showed etched patterns similar to control group as the immersion period increased. The SBS increased with increasing immersion period, whereas group F21 was not significantly different from the control group. Relatively high adhesive remnant index scores were identified as the ageing period increased. CONCLUSIONS: The present study indicated that in order to obtain suitable bond strength, it is recommended to use an acid etching-based bonding system for the fixation of orthodontic appliances on the enamel surface 21 days after the use of APF gel. CLINICAL RELEVANCE: Fluoride pre-treatment interferes with the acid etching effects on enamel, causing a reduction in the bond strength with orthodontic brackets.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Condicionamento Ácido do Dente , Animais , Bovinos , Esmalte Dentário , Análise do Estresse Dentário , Fluoretos , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA