Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(15): 157204, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34677991

RESUMO

Quantum spin liquids are exotic states of matter that form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially challenging due to the significant reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization of K_{2}Ni_{2}(SO_{4})_{3} forming a three-dimensional network of Ni^{2+} spins. Using density functional theory calculations, we show that this network consists of two interconnected spin-1 trillium lattices. In the absence of a magnetic field, magnetization, specific heat, neutron scattering, and muon spin relaxation experiments demonstrate a highly correlated and dynamic state, coexisting with a peculiar, very small static component exhibiting a strongly renormalized moment. A magnetic field B≳4 T diminishes the ordered component and drives the system into a pure quantum spin liquid state. This shows that a system of interconnected S=1 trillium lattices exhibits a significantly elevated level of geometrical frustration.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34207701

RESUMO

Age-related dementia refers to a state in which someone experiences multiple cognitive function impairment due to degenerative brain disease, and which causes difficulties in their daily life or social life. Dementia is the most common and serious obstacle in later life. Early intervention in the case of patients who are in the mild cognitive impairment (MCI) stage among the high-risk group can maintain and improve their cognitive function. The purpose of the current trial is aimed at investigating the association between a multi-component (exercise with cognitive) intervention program and habitual physical activity parameters on cognitive functions in MCI patients. Neuropsychological cognitive and depression assessments were performed by neuropsychologists according to normalized methods, including the Korean mini-mental State examination (K-MMSE) and modified Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog) and cognitive assessment tool (attention, processing speed), and the Korean version of the geriatric depression scale (SGDS-K), both at baseline and at a 12 weeks follow-up. The 12-week multi-component intervention improved cognitive function and habitual physical activity parameters in patients with MCI relative to controls. A multi-component intervention program for patients with MCI is considered to be an effective method of dementia prevention by improving global (ADAS-Cog) and frontal (trail-making test, digit symbol substitution test) cognition and habitual physical activity parameters such as moderate to vigorous physical activity and step count. In addition, it is important to encourage habitual physical activities to ensure that exercise intervention strategies are carried out at the duration and intensity required for improving physical and cognitive wellbeing and obtaining health benefits.


Assuntos
Disfunção Cognitiva , Idoso , Terapia Comportamental , Cognição , Disfunção Cognitiva/prevenção & controle , Exercício Físico , Humanos , Testes Neuropsicológicos
3.
Nat Commun ; 9(1): 1292, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599433

RESUMO

Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin-orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C4) to pseudo-linear (D4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.

4.
J Magn Reson ; 278: 113-121, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28388496

RESUMO

We report on the design and characterization of single-chip electron spin resonance (ESR) detectors operating at 50GHz, 92GHz, and 146GHz. The core of the single-chip ESR detectors is an integrated LC-oscillator, formed by a single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide semiconductor field effect transistors used as negative resistance network. On the same chip, a second, nominally identical, LC-oscillator together with a mixer and an output buffer are also integrated. Thanks to the slightly asymmetric capacitance of the mixer inputs, a signal at a few hundreds of MHz is obtained at the output of the mixer. The mixer is used for frequency down-conversion, with the aim to obtain an output signal at a frequency easily manageable off-chip. The coil diameters are 120µm, 70µm, and 45µm for the U-band, W-band, and the D-band oscillators, respectively. The experimental frequency noises at 100kHz offset from the carrier are 90Hz/Hz1/2, 300Hz/Hz1/2, and 700Hz/Hz1/2 at 300K, respectively. The ESR spectra are obtained by measuring the frequency variations of the single-chip oscillators as a function of the applied magnetic field. The experimental spin sensitivities, as measured with a sample of α,γ-bisdiphenylene-ß-phenylallyl (BDPA)/benzene complex, are 1×108spins/Hz1/2, 4×107spins/Hz1/2, 2×107spins/Hz1/2 at 300K, respectively. We also show the possibility to perform experiments up to 360GHz by means of the higher harmonics in the microwave field produced by the integrated single-chip LC-oscillators.

5.
J Phys Condens Matter ; 22(20): 206001, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21393712

RESUMO

We present the spin dynamics of isolated donor electrons in phosphorus-doped silicon at low temperature and in a high magnetic field. We performed a steady-state electron spin resonance (ESR) on the sample with a dopant concentration of 6.5 × 10(16) cm(- 3) in a high field of 2.87 T (80 GHz) and at temperatures from 48 down to 1.8 K. As the temperature decreases below 16 K, the resonance spectral line changes from the usual derivative form characteristic of absorptions. Very long spin-lattice relaxation time T(1) at low temperature gives rise to rapid passage effects and results in a dramatic change in the line shape and intensity as a function of temperature. We show that the numerical analysis based on the passage effects well explains the observed spectral changes with temperature. The spin-lattice relaxation time T(1) is derived by numerical fit to the experimental data. We discuss the dynamic nuclear polarization of (31)P nuclear spins which shows up as asymmetric intensities of the hyperfine-split ESR resonance lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA