Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLOS Digit Health ; 3(5): e0000497, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701055

RESUMO

As we learned during the COVID-19 pandemic, vaccines are one of the most important tools in infectious disease control. To date, an unprecedentedly large volume of high-quality data on COVID-19 vaccinations have been accumulated. For preparedness in future pandemics beyond COVID-19, these valuable datasets should be analyzed to best shape an effective vaccination strategy. We are collecting longitudinal data from a community-based cohort in Fukushima, Japan, that consists of 2,407 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time courses of the vaccine-elicited antibody response based on mathematical modeling, we first identified basic demographic and health information that contributed to the main features of the antibody dynamics, i.e., the peak, the duration, and the area under the curve. We showed that these three features of antibody dynamics were partially explained by underlying medical conditions, adverse reactions to vaccinations, and medications, consistent with the findings of previous studies. We then applied to these factors a recently proposed computational method to optimally fit an "antibody score", which resulted in an integer-based score that can be used as a basis for identifying individuals with higher or lower antibody titers from basic demographic and health information. The score can be easily calculated by individuals themselves or by medical practitioners. Although the sensitivity of this score is currently not very high, in the future, as more data become available, it has the potential to identify vulnerable populations and encourage them to get booster vaccinations. Our mathematical model can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.

2.
Nat Commun ; 14(1): 7395, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989736

RESUMO

During the COVID-19 pandemic, human behavior change as a result of nonpharmaceutical interventions such as isolation may have induced directional selection for viral evolution. By combining previously published empirical clinical data analysis and multi-level mathematical modeling, we find that the SARS-CoV-2 variants selected for as the virus evolved from the pre-Alpha to the Delta variant had earlier and higher peak in viral load dynamics but a shorter duration of infection. Selection for increased transmissibility shapes the viral load dynamics, and the isolation measure is likely to be a driver of these evolutionary transitions. In addition, we show that a decreased incubation period and an increased proportion of asymptomatic infection are also positively selected for as SARS-CoV-2 mutated to adapt to human behavior (i.e., Omicron variants). The quantitative information and predictions we present here can guide future responses in the potential arms race between pandemic interventions and viral evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Carga Viral
3.
Proc Natl Acad Sci U S A ; 120(41): e2305451120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788317

RESUMO

In the era of living with COVID-19, the risk of localised SARS-CoV-2 outbreaks remains. Here, we develop a multiscale modelling framework for estimating the local outbreak risk for a viral disease (the probability that a major outbreak results from a single case introduced into the population), accounting for within-host viral dynamics. Compared to population-level models previously used to estimate outbreak risks, our approach enables more detailed analysis of how the risk can be mitigated through pre-emptive interventions such as antigen testing. Considering SARS-CoV-2 as a case study, we quantify the within-host dynamics using data from individuals with omicron variant infections. We demonstrate that regular antigen testing reduces, but may not eliminate, the outbreak risk, depending on characteristics of local transmission. In our baseline analysis, daily antigen testing reduces the outbreak risk by 45% compared to a scenario without antigen testing. Additionally, we show that accounting for heterogeneity in within-host dynamics between individuals affects outbreak risk estimates and assessments of the impact of antigen testing. Our results therefore highlight important factors to consider when using multiscale models to design pre-emptive interventions against SARS-CoV-2 and other viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Surtos de Doenças/prevenção & controle , Probabilidade
4.
PLoS Pathog ; 19(3): e1011231, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972312

RESUMO

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , RNA Viral , Tratamento Farmacológico da COVID-19 , Antivirais/metabolismo , Sítios de Ligação
5.
J Infect Dis ; 228(5): 591-603, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36892247

RESUMO

BACKGROUND: Mpox virus (MPXV) is a zoonotic orthopoxvirus and caused an outbreak in 2022. Although tecovirimat and brincidofovir are approved as anti-smallpox drugs, their effects in mpox patients have not been well documented. In this study, by a drug repurposing approach, we identified potential drug candidates for treating mpox and predicted their clinical impacts by mathematical modeling. METHODS: We screened 132 approved drugs using an MPXV infection cell system. We quantified antiviral activities of potential drug candidates by measuring intracellular viral DNA and analyzed the modes of action by time-of-addition assay and electron microscopic analysis. We further predicted the efficacy of drugs under clinical concentrations by mathematical simulation and examined combination treatment. RESULTS: Atovaquone, mefloquine, and molnupiravir exhibited anti-MPXV activity, with 50% inhibitory concentrations of 0.51-5.2 µM, which was more potent than cidofovir. Whereas mefloquine was suggested to inhibit viral entry, atovaquone and molnupiravir targeted postentry processes. Atovaquone was suggested to exert its activity through inhibiting dihydroorotate dehydrogenase. Combining atovaquone with tecovirimat enhanced the anti-MPXV effect of tecovirimat. Quantitative mathematical simulations predicted that atovaquone can promote viral clearance in patients by 7 days at clinically relevant drug concentrations. CONCLUSIONS: These data suggest that atovaquone would be a potential candidate for treating mpox.


Assuntos
Mefloquina , Monkeypox virus , Humanos , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Monkeypox virus/efeitos dos fármacos
6.
Nat Commun ; 13(1): 4910, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987759

RESUMO

Appropriate isolation guidelines for COVID-19 patients are warranted. Currently, isolating for fixed time is adopted in most countries. However, given the variability in viral dynamics between patients, some patients may no longer be infectious by the end of isolation, whereas others may still be infectious. Utilizing viral test results to determine isolation length would minimize both the risk of prematurely ending isolation of infectious patients and the unnecessary individual burden of redundant isolation of noninfectious patients. In this study, we develop a data-driven computational framework to compute the population-level risk and the burden of different isolation guidelines with rapid antigen tests (i.e., lateral flow tests). Here, we show that when the detection limit is higher than the infectiousness threshold values, additional consecutive negative results are needed to ascertain infectiousness status. Further, rapid antigen tests should be designed to have lower detection limits than infectiousness threshold values to minimize the length of prolonged isolation.


Assuntos
COVID-19 , COVID-19/diagnóstico , Humanos , SARS-CoV-2
7.
medRxiv ; 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35118478

RESUMO

Appropriate isolation guidelines for COVID-19 patients are warranted. Currently, isolating for fixed time is adapted in most countries. However, given the variability in viral dynamics between patients, some patients may no longer be infectious by the end of isolation (thus they are redundantly isolated), whereas others may still be infectious. Utilizing viral test results to determine ending isolation would minimize both the risk of ending isolation of infectious patients and the burden due to redundant isolation of noninfectious patients. In our previous study, we proposed a computational framework using SARS-CoV-2 viral dynamics models to compute the risk and the burden of different isolation guidelines with PCR tests. In this study, we extend the computational framework to design isolation guidelines for COVID-19 patients utilizing rapid antigen tests. Time interval of tests and number of consecutive negative tests to minimize the risk and the burden of isolation were explored. Furthermore, the approach was extended for asymptomatic cases. We found the guideline should be designed considering various factors: the infectiousness threshold values, the detection limit of antigen tests, symptom presence, and an acceptable level of releasing infectious patients. Especially, when detection limit is higher than the infectiousness threshold values, more consecutive negative results are needed to ascertain loss of infectiousness. To control the risk of releasing of infectious individuals under certain levels, rapid antigen tests should be designed to have lower detection limits than infectiousness threshold values to minimize the length of prolonged isolation, and the length of prolonged isolation increases when the detection limit is higher than the infectiousness threshold values, even though the guidelines are optimized for given conditions.

8.
Elife ; 102021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34311842

RESUMO

Since the start of the COVID-19 pandemic, two mainstream guidelines for defining when to end the isolation of SARS-CoV-2-infected individuals have been in use: the one-size-fits-all approach (i.e. patients are isolated for a fixed number of days) and the personalized approach (i.e. based on repeated testing of isolated patients). We use a mathematical framework to model within-host viral dynamics and test different criteria for ending isolation. By considering a fixed time of 10 days since symptom onset as the criterion for ending isolation, we estimated that the risk of releasing an individual who is still infectious is low (0-6.6%). However, this policy entails lengthy unnecessary isolations (4.8-8.3 days). In contrast, by using a personalized strategy, similar low risks can be reached with shorter prolonged isolations. The obtained findings provide a scientific rationale for policies on ending the isolation of SARS-CoV-2-infected individuals.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Isolamento de Pacientes , Guias de Prática Clínica como Assunto , Quarentena , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/transmissão , Humanos , Modelos Teóricos , Técnicas de Diagnóstico Molecular , Pandemias , Isolamento de Pacientes/métodos , Isolamento de Pacientes/normas , Medicina de Precisão/métodos , Quarentena/métodos , Quarentena/normas , SARS-CoV-2/fisiologia , Carga Viral
9.
Pharmaceutics ; 12(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878065

RESUMO

Combination therapy with immune checkpoint blockade and ionizing irradiation therapy (IR) generates a synergistic effect to inhibit tumor growth better than either therapy does alone. We modeled the tumor-immune interactions occurring during combined IT and IR based on the published data from Deng et al. The mathematical model considered programmed cell death protein 1 and programmed death ligand 1, to quantify data fitting and global sensitivity of critical parameters. Fitting of data from control, IR and IT samples was conducted to verify the synergistic effect of a combination therapy consisting of IR and IT. Our approach using the model showed that an increase in the expression level of PD-1 and PD-L1 was proportional to tumor growth before therapy, but not after initiating therapy. The high expression level of PD-L1 in T cells may inhibit IT efficacy. After combination therapy begins, the tumor size was also influenced by the ratio of PD-1 to PD-L1. These results highlight that the ratio of PD-1 to PD-L1 in T cells could be considered in combination therapy.

10.
Int J Infect Dis ; 96: 454-457, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32417246

RESUMO

OBJECTIVES: On March 15, 2020, 61.3% of the confirmed cases of COVID-19 infection in South Korea are associated with the worship service that was organized on February 9 in the Shincheonji Church of Jesus in Daegu. We aim to evaluate the effects of mass infection in South Korea and assess the preventive control intervention. METHOD: Using openly available data of daily cumulative confirmed cases and deaths, the basic and effective reproduction numbers was estimated using a modified susceptible-exposed-infected-recovered-type epidemic model. RESULTS: The basic reproduction number was estimated to be R0=1.77. The effective reproduction number increased approximately 20 times after the mass infections from the 31 st patient, which was confirmed on February 9 in the Shincheonji Church of Jesus, Daegu. However, the effective reproduction number decreased to less than unity after February 28 owing to the implementation of high-level preventive control interventions in South Korea, coupled with voluntary prevention actions by citizens. CONCLUSION: Preventive action and control intervention were successfully established in South Korea.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Número Básico de Reprodução , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Surtos de Doenças , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , República da Coreia/epidemiologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA