Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630366

RESUMO

The pyrolysis of food waste has high economic potential and produces several value-added products, such as gas, bio-oil, and biochar. In South Korea, biochar production from food waste is prohibited, because dioxins are generated during combustion caused by the chloride ions arising from the high salt content. This study is the first to examine the water quality and the applicability of food waste-based biochar as solid refuse fuel (SRF) based on a demineralization process. The calorific value increased after demineralization due to the removal of ionic substances and the high carbon content. The chloride ion removal rate after demineralization increased with the increasing pyrolysis temperature. A proximate analysis of biochar indicated that the volatile matter decreased, while ash and fixed carbon increased, with increasing pyrolysis temperature. At 300 °C pyrolysis temperature, all domestic bio-SRF standards were met. The organic matter concentration in water decreased with increasing carbonization temperature, and the concentrations of soluble harmful substances, such as volatile organic compounds (VOCs), were within the standards or non-detectable. These results suggest that biochar can be efficiently generated from food waste while meeting the emission standards for chloride ions, dissolved VOCs, ash, and carbon.


Assuntos
Alimentos , Eliminação de Resíduos , Cloretos , Carbono , Halogênios
2.
Artigo em Inglês | MEDLINE | ID: mdl-35627543

RESUMO

Physical friction between a tire and the road surface generates tire wear particles (TWPs), which are a source of microplastics and particulate matter. This study investigated the trends of chemical leaching from TWPs depending on the treadwear rating of the tire. A road simulator was used to produce TWPs from tires with various treadwear ratings. Liquid chromatography-tandem mass spectrometry was used to analyze the chemical leaching from TWPs, with a particular focus on benzothiazole and its derivative 2-hydroxy benzothiazole. However, chemical mapping via high-resolution tandem mass spectrometry detected another derivative: 2-mercaptobenzothiazole. The benzothiazole groups were observed to have different leaching tendencies, implying that using benzothiazole as a marker compound may lead to incorrect TWP quantitation. The results of this research also suggest that the ecotoxicological influence of TWPs can vary with the treadwear rating of a tire.


Assuntos
Material Particulado , Plásticos , Benzotiazóis , Cromatografia Líquida , Ecotoxicologia , Material Particulado/análise , Plásticos/análise
3.
Waste Manag ; 137: 190-199, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794037

RESUMO

A significant amount of chlorine, and alkali and alkaline earth metal (AAEM) in food waste has been a major limitation to the utilization of food waste as fuel. The present study aims to investigate the behavior of chlorine and AAEM in food waste biochar during pyrolysis, demineralization, and combustion. Food waste compost (FWC) and food waste feedstock (FWF) were selected as raw materials. Three different pyrolysis temperatures from 300 to 500 °C and two demineralization processes, water and CO2-saturated water, were employed. As the pyrolysis temperature increased, crystallized salt was removed through demineralization, which further increased the heating value. Effective removal of chlorine was demonstrated in both demineralization methods. During demineralization, re-adsorption of Ca on food waste biochar occurred, which was alleviated by CO2-water demineralization. The total amounts of volatilized Cl and AAEM after CO2-water demineralization were reduced by 74.79-99.38% for FWF and 98.34-99.9% for FWC compared to raw biochar. Furthermore, slagging and fouling potentials for all food waste biochar samples were estimated using various indices. The proposed behavior of Cl and AAEM in food waste biochar during various fabrication conditions provides insight into how food waste biochar can be applied in thermos-electric power plant for co-firing with coal.


Assuntos
Cloro , Eliminação de Resíduos , Álcalis , Carvão Vegetal , Alimentos , Metais Alcalinoterrosos
4.
Environ Sci Technol ; 55(14): 9538-9547, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33749267

RESUMO

Toxicity results from exposure to mixtures of organic contaminants. Assessing this using ecotoxicity bioassays involves sampling of the environmental mixture and then introducing this into the test. The first step is accounting for the bioavailable levels of all mixture constituents. Passive sampling specifically targets these bioavailable fractions but the sampler-accumulated mixture varies with the compound and sampler properties as well as time. The second step involves reproducing and maintaining the sampled mixture constituents in the bioassay. Passive sampler extraction and spiking always leads to a skewed mixture profile in the test. Alternatively, the recovered passive samplers might be directly used in passive dosing mode. Here, the reproduced contaminant mixture depends on whether kinetic or equilibrium sampling applies. These concepts were tested for determining the combined toxicity of laboratory and field mixtures of aquatic contaminants in the Microtox and ER-Calux bioassays. Aqueous sample extraction and spiking, passive sampler extraction and spiking, and passive sampling and dosing were compared for first sampling and then introducing mixtures in toxicity bioassays. The analytical and toxicity results show that the correct way to first sample the bioavailable mixture profile, and then to reproduce and maintain this in the toxicity test, is by combining equilibrium passive sampling and dosing.


Assuntos
Poluentes Químicos da Água , Bioensaio , Ecotoxicologia , Monitoramento Ambiental , Testes de Toxicidade , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Pollut ; 266(Pt 2): 115224, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32698120

RESUMO

The lag effect in the polar organic chemical integrative sampler (POCIS) equipped with a polyethersulfone (PES) membrane (POCIS-PES) is a potential limitation for its application in water environments. In this study, a POCIS with a poly(tetrafluoroethylene) (PTFE) membrane (POCIS-PTFE) was investigated for circumventing membrane sorption in order to provide more reliable concentration measurements of organic contaminants. Sampler characteristics such as sampling rates (RS) and sampler-water partition coefficients (KSW) were similar for POCIS-PES and POCIS-PTFE, indicating that partitioning into Oasis HLB as the receiving phase dominates the overall partitioning from the aqueous phase to the POCIS. Membrane sorption was quantified in both laboratory and field experiments. Although POCIS-PTFE showed minor membrane sorption, the PTFE membranes were not robust enough to prevent changes in the sorption of the pollutants to the inner Oasis HLB sorbent due to biofouling. This was reflected in significant ionization effects in the electrospray ionization (ESI) source during the LC-MS/MS analysis. Despite clear differences in the ionization effects, the two POCISs types provided similar time-weighted average (CTWA) concentrations after a two-week passive sampling campaign in surface water and the outflow of a wastewater treatment plant. This study contributes to a more detailed understanding of POCIS application by providing a quantitative evaluation of membrane sorption and its associated effects in the laboratory and field.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Cromatografia Líquida , Compostos Orgânicos , Polímeros , Politetrafluoretileno , Sulfonas , Espectrometria de Massas em Tandem
6.
Chemosphere ; 252: 126641, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443283

RESUMO

This study investigated the possibility of applying pyrolysis as an alternative method to recycle powdered activated carbon-containing water treatment residuals (PAC-WTRs) discharged from the Cheongju water treatment plant as a multifunctional adsorbent. WTRs pyrolyzed for 1 h at 200-700 °C were compared with raw material. The carbon content of the PAC-WTR reaches 19.27%, with about 25% Al and 17% Si. Changes in PAC through pyrolysis imparted new adsorbent properties to WTR. As the pyrolysis temperature increased, the purity of PAC increased, and pores were regenerated to recover the Brunauer-Emmett-Teller (BET) from 6.5 m2 g-1 to 131.8 m2 g-1. In addition, the basicity increased as the carboxylic and phenolic groups on the carbon surface were decomposed, which increased the cation (methylene blue) adsorption capacity and reduced heavy metal leaching. As the coagulant regenerated with increasing pyrolysis temperature, the amount of aluminum leached and phosphate removal efficiency were increased. In the case of simultaneous removal of cations (MB+) and anions (PO43-), the removal efficiency was higher than that for single adsorption without competition through multi-layer adsorption by Al complex and PAC complex. Therefore, the pyrolyzed PAC-WTR is capable of adsorbing and removing anions and cations simultaneously without the peril of substance leaching. The regenerated WTRs containing PAC is expected to be utilized as a multi-functional remediation material for wastewater containing various pollutants.


Assuntos
Poluentes Químicos da Água , Purificação da Água/métodos , Adsorção , Alumínio , Carvão Vegetal , Azul de Metileno , Fosfatos , Pirólise , Reciclagem , Águas Residuárias
7.
Ecotoxicology ; 29(3): 286-294, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32124145

RESUMO

Pentachlorophenol (PCP) is a widespread and persistent hydrophobic organic pollutant in the environment despite its restricted public use. Risk assessment of such hydrophobic organic compounds (HOCs) is challenging because sorption and volatilization issues during toxicity test often lead to inconsistent exposure concentration. Considering the hydrophobicity of the PCP, in this study, a passive dosing format was applied by adopting a silicone O-ring as a reservoir and evaluated its applicability on the determination of PCP on Daphnia magna. Results obtained with passive dosing method were compared with that of solvent spiking method. We hypothesized that the passive dosing method may provide more reliable and accurate toxicity results than conventional solvent spiking approach. As a result, the partition coefficient of PCP between methanol and a test medium (log KMeOH:ISO) was 2.1, which enabled the maintenance of reliable exposure concentration throughout the experiment. In the acute toxicity tests, passive dosing and solvent spiking showed similar EC50 values of 576 and 485 µg/L for 24 h, and 362 and 374 µg/L for 48 h, respectively, which overlap with EC50 values of previous studies. Altogether, both methods were suitable for the acute toxicity assessment of hydrophobic PCP.


Assuntos
Daphnia/fisiologia , Pentaclorofenol/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Poluentes Ambientais , Interações Hidrofóbicas e Hidrofílicas , Medição de Risco , Solventes , Testes de Toxicidade Aguda
8.
Water Res ; 172: 115512, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986401

RESUMO

This study proposes a novel method to directly treat reject water with a high ammonium content, without relying on dilution. The originality of this method resides in leveraging the coordinated action of a methane- and methanol-dependent bacterial consortium and the biogas generated from wastewater treatment facilities. Specifically, ammonium is removed through autotrophic assimilation in the glutamate cycle of methanotrophs and Methylophilus while, simultaneously, methanol generated by methanotrophs is treated through formaldehyde assimilation as Methylophilus undergo the same ribulose monophosphate cycle as methanotrophs. Using this method, the backflow of high-concentration ammonium into the wastewater treatment process was reduced to 59% in a single operation using a sequencing batch reactor at a mean influent concentration of 877.3 mg L-1. However, the removal rate temporarily declined to an average of 37.6% at a concentration of 800 mg L-1 or above, which was imputed to the influence of toxic intermediates.


Assuntos
Metano , Águas Residuárias , Reatores Biológicos , Metanol , Nitrogênio , Eliminação de Resíduos Líquidos , Água
9.
Water Res ; 145: 248-258, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30142522

RESUMO

The performances of an equilibrium and a kinetic passive sampler for monitoring a range of organic contaminants (Log KOW from -0.03 to 6.26) were evaluated in the effluent of a wastewater treatment plant, the receiving river Saar as well as the river Mosel in Germany. The polar organic chemical integrative sampler (POCIS) and a new mixed polymer sampler (MPS) were selected as kinetic and equilibrium passive samplers, respectively. Concentrations were described in terms of a time-weighted average concentration (CTWA) from the POCIS measurements and as an equilibrium concentration from the MPS (CEquil-MPS) and POCIS membrane (CEquil-PES) analyses. Twenty-seven compounds could be detected, including eight priority substances of the EU Water Framework Directive. Both sampler types detected a similar range of compounds in the low ng/L to µg/L range, with a high proportion of pharmaceuticals being detected at all sampling sites. To account for uncertainty in the POCIS sampling rates, a range in CTWA was estimated by applying low and high sampling rates. For the compounds that were detected in the POCIS this range was within a factor of 3.5. Interestingly, the MPS extracts showed lower ionisation artefacts than the POCIS extracts during the LC-MS/MS analysis. Finally, total water concentrations (CTotal) were estimated from the dissolved concentrations, literature organic carbon partition coefficients (KOC) and the total organic carbon levels measured in the rivers. For the compounds in this study, negligible differences between CTotal and the passive sampler-derived dissolved concentrations were found with a maximum difference of 15% for diclofenac. Overall, this study demonstrated that the parallel application of kinetic and equilibrium passive samplers can improve the description of water quality.


Assuntos
Rios , Poluentes Químicos da Água , Cromatografia Líquida , Monitoramento Ambiental , Alemanha , Espectrometria de Massas em Tandem
10.
Sci Total Environ ; 627: 905-915, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426215

RESUMO

In this work, Oasis HLB® beads were embedded in a silicone matrix to make a single phase passive sampler with a higher affinity for polar and ionisable compounds than silicone alone. The applicability of this mixed polymer sampler (MPS) was investigated for 34 aquatic contaminants (log KOW -0.03 to 6.26) in batch experiments. The influence of flow was investigated by comparing uptake under static and stirred conditions. The sampler characteristics of the MPS was assessed in terms of sampling rates (RS) and sampler-water partition coefficients (KSW), and these were compared to those of the polar organic chemical integrative sampler (POCIS) as a reference kinetic passive sampler. The MPS was characterized as an equilibrium sampler for both polar and non-polar compounds, with faster uptake rates and a shorter time to reach equilibrium than the POCIS. Water flow rate impacted sampling rates by up to a factor of 12 when comparing static and stirred conditions. In addition, the relative accumulation of compounds in the polyethersulfone (PES) membranes versus the inner Oasis HLB sorbent was compared for the POCIS, and ranged from <1% to 83% depending on the analyte properties. This is indicative of a potentially significant lag-phase for less polar compounds within POCIS. The findings of this study can be used to quantitatively describe the partitioning and kinetic behaviour of MPS and POCIS for a range of aquatic organic contaminants for application in field sampling.

11.
Chemosphere ; 174: 297-305, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28183055

RESUMO

Oasis hydrophilic lipophilic balance® (Oasis HLB) is commonly employed in solid phase extraction (SPE) of environmental contaminants and within polar organic chemical integrative passive samplers (POCIS). In this study batch experiments were carried out to evaluate the relative affinity of a range of relevant organic pollutants to Oasis HLB in aqueous systems. The influence of sorbate concentration, temperature, pH, and salinity on the equilibrium sorption was investigated. Equilibrium partition ratios (KD) of 28 compounds were determined, ranging over three orders of magnitude from 1.16 × 103 L/kg (atenolol) to 1.07 × 106 L/kg (isoproturon). The Freundlich model was able to describe the equilibrium partitioning to Oasis HLB, and an analysis of the thermodynamic parameters revealed the spontaneous and exothermic nature of the partitioning process. Ionic strength had only a minor effect on the partitioning, whereas pH had a considerable effect but only for ionizable compounds. The results show that apolar interactions between the Oasis HLB and analyte mainly determine the equilibrium partitioning. These research findings can be used to optimize the application of SPE and POCIS for analyses of environmental contaminants even in complex mixtures.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Salinidade , Temperatura , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Compostos Orgânicos/análise , Extração em Fase Sólida , Água/química , Poluentes Químicos da Água/análise
12.
Chemosphere ; 139: 174-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26117202

RESUMO

Microbial toxicity bioassays such as the Microtox® test are ubiquitously applied to measure the toxicity of chemicals and environmental samples. In many ways their operation is conducive to the testing of organic chemicals. They are of short duration, use glass cuvettes and take place at reduced temperatures in medium lacking sorbing components. All of these are expected to reduce sorptive and volatile losses, but particularly for hydrophobic organics the role of such losses in determining the bioassay response remains unclear. This study determined the response of the Microtox® test when using solvent spiking compared to passive dosing for introducing the model hydrophobic compounds acenaphthene, phenanthrene, fluoranthene and benzo(a)pyrene. Compared to solvent spiking, the apparent sensitivity of the Microtox® test with passive dosing was 3.4 and 12.4 times higher for acenaphthene and phenanthrene, respectively. Furthermore, fluoranthene only gave a consistent response with passive dosing. Benzo(a)pyrene did not result in a response with either spiking or passive dosing even at aqueous solubility. Such differences in the apparent sensitivity of the Microtox® test can be traced back to the precise definition of the dissolved exposure concentrations and the buffering of losses with passive dosing. This highlights the importance of exposure control even in simple and short-term microbial bioassays such as the Microtox® test.


Assuntos
Bioensaio/métodos , Poluentes Ambientais/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade/métodos , Interações Hidrofóbicas e Hidrofílicas , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA