Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0267263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36763674

RESUMO

One of the defining features of the Anthropocene is eroding ecosystem services, decreases in biodiversity, and overall reductions in the abundance of once-common organisms, including many insects that play innumerable roles in natural communities and agricultural systems that support human society. It is now clear that the preservation of insects cannot rely solely on the legal protection of natural areas far removed from the densest areas of human habitation. Instead, a critical challenge moving forward is to intelligently manage areas that include intensively farmed landscapes, such as the Central Valley of California. Here we attempt to meet this challenge with a tool for modeling landscape connectivity for insects (with pollinators in particular in mind) that builds on available information including lethality of pesticides and expert opinion on insect movement. Despite the massive fragmentation of the Central Valley, we find that connectivity is possible, especially utilizing the restoration or improvement of agricultural margins, which (in their summed area) exceed natural areas. Our modeling approach is flexible and can be used to address a wide range of questions regarding both changes in land cover as well as changes in pesticide application rates. Finally, we highlight key steps that could be taken moving forward and the great many knowledge gaps that could be addressed in the field to improve future iterations of our modeling approach.


Assuntos
Ecossistema , Polinização , Animais , Humanos , Insetos , Biodiversidade , Agricultura , California
2.
PLoS One ; 16(11): e0259379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34788329

RESUMO

Fireflies are a family of charismatic beetles known for their bioluminescent signals. Recent anecdotal reports suggest that firefly populations in North America may be in decline. However, prior to this work, no studies have undertaken a systematic compilation of geographic distribution, habitat specificity, and threats facing North American fireflies. To better understand their extinction risks, we conducted baseline assessments according to the categories and criteria of the International Union for Conservation of Nature (IUCN) Red List for 132 species from the United States and Canada (approximately 79% of described species in the region). We found at least 18 species (14%) are threatened with extinction (e.g. categorized as Critically Endangered, Endangered, or Vulnerable) due to various pressures, including habitat loss, light pollution, and climate change (sea level rise and drought). In addition, more than half of the species (53%) could not be evaluated against the assessment criteria due to insufficient data, highlighting the need for further study. Future research and conservation efforts should prioritize monitoring and protecting populations of at-risk species, preserving and restoring habitat, gathering data on population trends, and filling critical information gaps for data deficient species suspected to be at risk.


Assuntos
Vaga-Lumes , Animais , Extinção Biológica , Poluição Luminosa
3.
Environ Entomol ; 50(5): 1095-1104, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34145877

RESUMO

In June of 2013 an application of dinotefuran on an ornamental planting of European linden trees (Tilia cordata Mill. [Malvales: Malvalceae]) in a shopping mall parking lot in Wilsonville, Oregon provoked the largest documented pesticide kill of bumble bees in North America. Based on geographic information systems and population genetic analysis, we estimate that between 45,830 and 107,470 bumble bees originating from between 289 and 596 colonies were killed during this event. Dinotefuran is a neonicotinoid that is highly effective in exterminating and/or harming target pest insects and non-target beneficial insects. Analysis to detect the concentration of pesticides in flowers that received foliar application revealed that the minimum reported dinotefuran concentration of a sampled T. cordata flower was 7.4 ppm, or in excess of 737% above the LC50 of the beneficial pollinator, the honey bee (Apis mellifera Linnaeus, 1758 [Hymenoptera: Apidae]). Furthermore, sampled Vosnesensky bumble bees (Bombus vosnesenskii Radoskowski, 1862 [Hymenoptera: Apidae]) were found to have an average dinotefuran concentration of 0.92 ppm at the time of death, which exceeds the maximum LC50 of A. mellifera (0.884 ppm). Our study underscores the lethal impact of the neonicotinoid pesticide dinotefuran on pollinating insect populations in a suburban environment. To our knowledge, the documentation and impact of pesticide kills on wild populations of beneficial insects has not been widely reported in the scientific literature. It is likely that the vast majority of mass pesticide kills of beneficial insects across other environments go unnoticed and unreported.


Assuntos
Himenópteros , Praguicidas , Animais , Abelhas , Flores , Neonicotinoides/toxicidade , Oregon
4.
Sci Rep ; 11(1): 7580, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828196

RESUMO

Pollinators are undergoing a global decline. Although vital to pollinator conservation and ecological research, species-level identification is expensive, time consuming, and requires specialized taxonomic training. However, deep learning and computer vision are providing ways to open this methodological bottleneck through automated identification from images. Focusing on bumble bees, we compare four convolutional neural network classification models to evaluate prediction speed, accuracy, and the potential of this technology for automated bee identification. We gathered over 89,000 images of bumble bees, representing 36 species in North America, to train the ResNet, Wide ResNet, InceptionV3, and MnasNet models. Among these models, InceptionV3 presented a good balance of accuracy (91.6%) and average speed (3.34 ms). Species-level error rates were generally smaller for species represented by more training images. However, error rates also depended on the level of morphological variability among individuals within a species and similarity to other species. Continued development of this technology for automatic species identification and monitoring has the potential to be transformative for the fields of ecology and conservation. To this end, we present BeeMachine, a web application that allows anyone to use our classification model to identify bumble bees in their own images.


Assuntos
Inteligência Artificial , Abelhas/anatomia & histologia , Abelhas/classificação , Aprendizado Profundo , Animais , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ecossistema , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , América do Norte , Pigmentação , Polinização , Especificidade da Espécie
6.
PeerJ ; 4: e2249, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602260

RESUMO

Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.

8.
Am Nat ; 172(4): 486-96, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18793093

RESUMO

For more than 80 years, ecologists have debated whether reproduction by female insect herbivores and parasitoids is constrained by the time needed to find hosts (time limitation) or by the finite supply of mature eggs (egg limitation). Here we present the first direct measures of permanent time limitation and egg limitation and their influences on the cost of oviposition and lifetime reproduction for an insect in nature. We studied the gall midge Rhopalomyia californica, which neither matures nor resorbs eggs during the adult stage. By sampling females soon after their death and correcting for predation effects, we demonstrate that females lay a large proportion of their total complement of eggs (multiyear mean: 82.9%). The egg supplies of 17.1% of females were completely exhausted, with the remaining 82.9% of females being time limited. As predicted by theory, we estimate that even though egg limitation is a minority condition within the population, egg costs make a substantial contribution (57% of the total) to the cost of oviposition. We conclude that insect life histories evolve to produce a balanced risk of time and egg limitation and, therefore, that both of these constraining factors have important influences on insect oviposition behavior and population dynamics.


Assuntos
Dípteros/fisiologia , Animais , Dípteros/crescimento & desenvolvimento , Feminino , Oviposição , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA